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Introduction
• In computations in the continuum, gauge invariance is typically dealt with by gauge 

fixing; 
• This replaces gauge invariance by the powerful BRST symmetry which essentially 

reflects the fact that the gauge-fixing procedure amounts to introduce an identity in 
the path integral; 

• Preserving BRST invariance allows for an easy control of spurious dependences such 
as gauge-parameter dependence; 

• However, introducing regulators typically deform BRST invariance thanks to the 
mass-like behavior of such terms; 

• Such a deformation is encoded in the so-called modified Ward identities (mWI) and 
modified Slavnov-Taylor identity (mSTI);

• In order to avoid such complications, several different gauge-invariant flow equations 
were proposed along the history of the FRG; 

• In fact, we shall argue that at least some of those gauge-invariant formulations can 
be nearly recovered by dressed gauge fields;
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Dealing with gauge invariance in the path integral

Warming up: Abelian gauge theories 
(Euclidean Path Integral)

Z[J] = ∫ 𝒟A e−SM[A]+ ∫ ddx Jμ(x)Aμ(x)

SM[A] =
1
4 ∫ d4x FμνFμν

generating functional of correlation functions 

Maxwell’s Action

Maxwell’s action is invariant under 
Abelian gauge transformations written as

A′￼μ = Aμ − ∂μξ

Such invariance prevents the definition 
of the propagator of the photon field

GAUGE FIXING!
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Faddeev-Popov Gauge-Fixing Procedure

Z[J] = ∫ 𝒟A δ(∂μAμ) detℳFP e−SM[A]+ ∫ ddx Jμ(x)Aμ(x)

We choose the Landau gauge for concreteness

Faddeev-Popov Identity

Faddeev-Popov Operator: ℳFP = − ∂2 (field independent) 

Introduction of the so-called FP 
ghosts and the LN field: Z[J] = ∫ [𝒟μ]FP e−S[A,b,c̄,c]+Ssources

[𝒟μ]FP = [𝒟A][𝒟b][𝒟c̄][𝒟c]

S[A, b, c̄, c] = SM[A] + SFP[A, b, c̄, c] SFP[A, b, c̄, c] = ∫ d4x b ∂μAμ + ∫ d4x c̄∂2c
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BRST Symmetry
An important outcome of the FP quantization: BRST symmetry

sAμ = − ∂μc
sc = 0
sc̄ = b
sb = 0

s2 = 0 SFP[A, b, c̄, c] = s∫ d4x c̄ ∂μAμ

FP action is written as a BRST variation: 
BRST exact

sAμ = − ∂μcδAμ = − ∂μξ
Gauge transformation BRST transformation

Formally the same

Maxwell’s Action is thus invariant under BRST 
transformations but it is not BRST exact: 

BRST closed
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Slavnov-Taylor Identity
The effective action satisfies the Slavnov-Taylor identity that encodes BRST symmetry

𝒮(Γ) = ∫ d4x (c ∂μ
δΓ
δAμ

+ b
δΓ
δc̄ ) = 0

• The imposition of the Slavnov-Taylor identity brings a powerful and elegant framework to control 
gauge-parameter dependence of correlation functions. 

• Let us have a look at gauge conditions involving free gauge parameters:

∂μAμ = α b

non-negative gauge parameter 

SFP[A, b, c̄, c] = s∫ d4x c̄ (∂μAμ −
α
2

b)
FP gauge-fixing action

• The gauge parameter enters only in the gauge-fixing action and thus in a BRST-exact term. 
• Due to cohomological techniques, the gauge parameter does not enter correlation functions of 

gauge-invariant operators. 
• This can be controlled by an extended Slavnov-Taylor.
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Extended Slavnov-Taylor Identity
We can introduce the gauge parameter in a BRST-doublet structure, i.e.,

𝒮ext(Γ) = ∫ d4x (c ∂μ
δΓ
δAμ

+ b
δΓ
δc̄ ) + χ

∂Γ
∂α

= 0

sα = χ
sχ = 0 SFP[A, b, c̄, c] = ∫ d4x b (∂μAμ −

α
2

b) + ∫ d4x (c̄ ∂2 c −
χ
2

c̄b)
Extended Slavnov-Taylor Identity

With this identity, we can easily prove that correlation functions of gauge-invariant operators are 
gauge-parameter independent. Take a gauge invariant operator , i.e.,  with .𝒪(x) s𝒪(x) = 0 𝒪 ≠ s𝒪̂

Correlation functions of gauge-invariant operators can be computed by coupling sources to , i.e.,𝒪(x)

∫ d4x J𝒪(x) 𝒪(x) ⟨𝒪(x1)…𝒪(xn)⟩ =
δ

δJ𝒪(x1)
…

δ
δJ𝒪(xn)

W[J]

J=0
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Extended Slavnov-Taylor Identity

Applying the test operator:

∂
∂χ

δ
δJ𝒪(x1)

…
δ

δJ𝒪(xn)

and turning off sources and  χ

∂
∂α

⟨𝒪(x1)…𝒪(xn)⟩c = 0

gauge-parameter independence  

Hence, the extended Slavnov-Taylor identity ensures gauge-parameter independence of gauge-
invariant correlation functions.
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Coarse-graining and the fate of BRST invariance

Zk[J] = ∫ [𝒟μ]FP e−S[A,b,c̄,c]−ΔS(A)
k −ΔS(c̄c)

k +Ssources

Our interest is to apply Functional Renormalization Group (FRG) techniques and hence we 
introduce quadratic regulators on the elementary fields:

ΔS(A)
k =

1
2 ∫ d4x Aμ ℛμν

k,(A)(−∂2) Aν

ΔS(c̄c)
k = ∫ d4x c̄ ℛk,(c̄c)(−∂2) cClearly, the regulator terms break BRST invariance. 

However, let us remind that the transverse gauge field is 
gauge invariant in the Abelian case. Hence, we could try to 
employ the following BRST-invariant construction:

ΔS(AT)
k =

1
2 ∫ d4x AT

μ ℛμν
k,(A)(−∂2) AT

ν AT
μ = Aμ −

∂μ

∂2
∂ ⋅ Awith

ΔS(AT)
k = ΔS(A)

k + ∫ d4x ℱk(A) ∂ ⋅ A

Collecting the ghost terms:

SFP[0,0,c̄, c] + ΔS(c̄c)
k = ∫ d4x c̄ ( − ∂2 + ℛk,(c̄c)(−∂2)) c

dressed gauge field
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Gauge-invariant coarse-graining

Zk[J] = ∫ [𝒟μ]FP (det ℳFP,k) e−S[A,b,c̄,c]−ΔS(AT )
k + ∫ d4x ℱk(A) ∂⋅A+Ssources

We now employ the Landau gauge. As a first step we integrate out the FP ghosts and replace 
the gauge-field regulator by the (dressed) gauge-invariant regulator

Ghost sector:

det ℳFP,k = det (∂2 + ℛk,(c̄c)(−∂2)) = exp[Tr ln(∂2 + ℛk,(c̄c)(−∂2))]
From the gauge-fixing term:

∫ d4x b ∂μAμ − ∫ d4x ℱk(A) ∂ ⋅ A∫ d4x b ∂μAμ

Consequently

∫ d4x b̃ ∂μAμ b̃ = b − ℱk(A) trivial Jacobian

10



Gauge-invariant coarse-graining

Zk[J] = ∫ [𝒟A] δ(∂ ⋅ A) e−SM[A]−ΔS(AT )
k +Ssources

Integrating out the redefined LN field:

Ghost sector decouples - field-independent.
In the Landau gauge: AT

μ → Aμ

In this sense, in the Landau gauge condition, the gauge field can be replaced by a gauge-
invariant field with no extra cost. Hence, the regulator can be written in terms of gauge-
invariant fields.

This is quite similar to the gauge-invariant flow equation proposed by 
C. Wetterich recently. It is related to the standard flow equation by an 

appropriate field-redefinition in the Landau gauge.

What about matter fields?
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Physical (dressed) matter fields: 
Let us write down the action for QED in the Landau gauge:

SQED[Φ] = SM[A] + SFP[A, b, c̄, c] + SD[ψ̄, ψ, A]

SD[ψ̄, ψ, A] = ∫ d4x (ψ̄ γμDμψ − m ψ̄ ψ) Dμ = ∂μ − igAμ

We can define a gauge-invariant (dressed) field as follows:
[Dirac, Lavelle-McMullan,…]

ψ h = exp (−ig
∂ ⋅ A
∂2 ) ψ

ψ̄h = ψ̄ exp (ig
∂ ⋅ A
∂2 )

Gauge-invariant dressed fermions
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Physical (dressed) matter fields: 

Gauge-invariant regulator

ΔS(ψ̄ hψ h)
k = ∫ d4x ψ̄ h ℛk,(ψ̄ ψ)(−∂2) ψ h ΔS(ψ̄ ψ)

k = ∫ d4x ψ̄ ℛk,(ψ̄ ψ)(−∂2) ψ

In the Landau gauge

Once again, in the Landau gauge, the gauge-invariant (non-quadratic) regulator collapses 
into a quadratic expression: “physical gauge” 

This is some sort of miraculous property of the Landau gauge!

In the Landau gauge, we can write the regulated path integral with dressed fields which 
engender a gauge-invariant meaning to it or, conversely, a physical meaning to the Landau 
gauge.

One can map the standard regularized path integral to the gauge-invariant regularized path 
integral by a change of variables in the Landau gauge.
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Non-Abelian gauge theories
Let us consider now

Z[J] = ∫ 𝒟A e−SYM[A]+ ∫ ddx Ja
μ(x)Aa

μ(x)

generating functional of correlation functions 

SYM[A] =
1
4 ∫ d4x Fa

μνFa
μν

Yang-Mills Action

Gauge transformation

A′￼μ = U†AμU +
i
g

U†∂μU U ∈ SU(N )

Fa
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μ Ac
ν

Aμ = Aa
μTa

[Ta, Tb] = if abcTc

Z[J] = ∫ 𝒟A δ(∂μAa
μ) detℳFP e−SYM[A]+ ∫ ddx Ja

μ(x)Aa
μ(x)

Gauge-fixed path integral (Landau gauge)
ℳab

FP = − ∂μDab
μ

Dab
μ = δab∂μ − gf abcAc

μ

FP operator is field dependent
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Introducing FP ghosts and LN field

Z[J] = ∫ [𝒟μ]FP e−S[A,b,c̄,c]+Ssources S[A, b, c̄, c] = SYM + ∫ d4x (ba∂μAa
μ + c̄a∂μDab

μ cb)

BRST Transformations

sAa
μ = − Dab

μ cb

sca =
g
2

f abccbcc

sc̄a = ba

sba = 0

s2 = 0

Couple external sources to the non-
linear BRST transformations:

Sext = ∫ d4x [Ωa
μ (sAa

μ) + La (sca)]

𝒮(Γ) = ∫ d4x ( δΓ
δAa

μ

δΓ
Ωa

μ
+

δΓ
δca

δΓ
δLa

+ ba δΓ
δc̄a ) = 0

Slavnov-Taylor Identity

Can we introduce a gauge-invariant regulator 
for the gauge field?

15



Dressing the gauge field
[Zwanziger, Lavelle-McMullan,…]

fA[U ] = Tr∫ d4x AU
μ AU

μ

For a given gauge field configuration , we search for  that minimizes the following 
functional:

Aμ U

Ah
μ = Aμ −

∂μ

∂2
∂ ⋅ A + ig [Aμ,

1
∂2

∂ ⋅ A] +
ig
2 [ 1

∂2
∂ ⋅ A, ∂μ

1
∂2

∂ ⋅ A] + ig
∂μ

∂2 [ ∂ν

∂2
∂ ⋅ A, Aν] +

ig
2

∂μ

∂2 [ ∂ ⋅ A
∂2

, ∂ ⋅ A] + 𝒪(A3)

Solution (series):

Properties:

• The dressed field  is gauge invariant; 

• It is transverse, ; 
• It reduces to the transverse gauge field in the Abelian limit; 
• Apart from the first term (that is the gauge field itself), all terms contain at least one factor of .

Ah
μ

∂μAh
μ = 0

∂ ⋅ A

By construction:

sAh
μ = 0
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Dressing the gauge field
Ah

μ → AμIn the Landau gauge:

We can introduce the following gauge-invariant regulator: ΔS(Ah)
k =

1
2 ∫ d4x Ah,a

μ ℛab
k,μν(−∂2) Ah,b

ν

Zk[J] = ∫ 𝒟A δ(∂μAa
μ) detℳFP(A) e−SYM[A]+ ∫ ddx Ja

μ(x)Aa
μ(x)−ΔS(Ah)

k

detℳFP(A) → detℳFP(Ah)

The presence of the delta functional allows for the following replacement:

det(−δab∂2 + gf abcAh,c
μ ∂μ)

det(δabPk(−∂2) + gf abcAh,c
μ ∂μ)

This looks very much with the logic of the gauge-invariant flow equation by C. Wetterich
17



Recovering the standard flow
In the Landau gauge:

ΔS(Ah)
k =

1
2 ∫ d4x Ah,a

μ ℛab
k,μν(−∂2) Ah,b

ν ΔS(Ah)
k = ΔS(A)

k + ∫ d4x ℱa(A) (∂ ⋅ Aa)

The presence of the delta functional allows for: ΔS(Ah)
k → ΔS(A)

k

detℳFP,k(Ah) → detℳFP,k(A) = det(−δab∂2 + gf abcAc
μ∂μ + δabℛk(−∂2))

Lifting the regularized FP operator into the Boltzmann weight:

Zk[J] = ∫ 𝒟A𝒟c̄𝒟c e−S[A,c̄,c]−ΔS(A)
k −ΔS(c̄c)

k +Ssources

back to the “standard” construction  

Remark: If a different gauge is employed, the gauge-invariant regulator is not quadratic on the fields.
(special role of the Landau gauge) 
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Remark: Background Field Method
We can control gauge-parameter and background field dependence by introducing the 
following extended BRST transformations:
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Aa
μ = Āa

μ + aa
μ

D̄ab
μ ab

μ = αba

saa
μ = − Dab

μ cb

sca =
g
2

f abccbcc

sc̄a = ba

sba = 0
sα = χ

sĀa
μ = Va

μ

sVa
μ = 0

𝒮ext(Γ) = ∫ d4x ( δΓ
δaa

μ

δΓ
Ωa

μ
+

δΓ
δca

δΓ
δLa

+ ba δΓ
δc̄a

+ Va
μ

δΓ
δĀa

μ ) + χ
∂Γ
∂α

= 0

extended Slavnov-Taylor identity

Acting with suitable test operators allows for the derivation 
of identities of the form:

∂
∂α

⟨Δ1(x1)…Δn(xn)⟩ = Υ(x1, …, xn)

δ
δĀa

μ(y)
⟨Δ1(x1)…Δn(xn)⟩ = Θ(x1, …, xn; y)



What about quantum gravity?
Can we define a dressing for the metric fluctuations?

fh[ϵ] =
1
2 ∫ d4x ḡ ḡμνhϵ

μν

Dressed field: ĥμν It is possible to show that: ĥμν → hμν for

Minimizing 
functional

α = 0 β = 1

With: Fμ[ḡ; h] = ∇̄νhν
μ −

1 + β
4

∇̄μh

[Biondo, Eichhorn, Pereira]

One can repeat the same argument as before and construct a gauge-invariant flow equation by 
employing the gauge-invariant regulator with :ĥ

ΔS(ĥ)
k =

1
2 ∫ d4x ḡ ĥμν ℛμν,αβ

k ( − ∇̄2) ĥαβ

This differs from the gauge-invariant construction by Wetterich; Perhaps there is 
another dressing that recovers his results!
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Conclusions

• Gauge-fixing seems to be unavoidable in order to perform concrete computations; 
• Clearly, choosing different gauges should not affect physical quantities; 
• However, convenience is always a reasonable criterion for choosing a gauge; 
• The Landau gauge in (non-)Abelian gauge theories plays a special role in the sense 

that it collapses a gauge-invariant (dressed) field to the gauge field; 
• The same happens in quantum gravity by choosing the Landau-DeWitt gauge;

• The control of gauge-parameter and background-field dependences can be achieved 
by an extended Slavnov-Taylor identity (or its modification due to the presence of the 
regulator); 

• This allows for the derivation of the so-called Nielsen identities as well as Landau-
Fradkin-Khalatnikov transformations (relating correlation functions computed in 
different gauges)
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Thank You!


