
A lapse Wick rotation for the FRG

Max Niedermaier

PITT PACC
Department of Physics and Astronomy

University of Pittsburgh

in collaboration with R. Banerjee

Quantum Spacetime and the Renormalization Group
Sardinia, Oct. 3, 2023

A lapse Wick rotation for the FRG Niedermaier



Outline

1 Wick rotation in the Lapse

2 Lapse Wick rotated FRG

3 Complexified diffusion kernel and Green’s function

4 Beyond semigroup vacua: EPA approximation for Bianchi I .

5 Conclusions and Outlook.

A lapse Wick rotation for the FRG Niedermaier



Towards Lorentzian FRG
FRG computations have mostly used Euclidean signature. The very
definition of a Lorentzian FRG is nontrivial.

Tension between maintaining ‘covariance’ and ‘finiteness of RHS’.
Approaches include:

– Fehre et al (2021) [Symanzik cutoff, spectral functions]

– R.B.-M.N. (2022) [spatial cutoff]

– D’Angelo et al (2022) [Symanzik cutoff, T-product]

Here: Wick rotation approach from Euclidean to near Lorentzian regime.
Wick rotate in lapse not in time on real manifold.

I Maintains in qualified sense ‘covariance’ and ‘finiteness of RHS’.

I Allows ‘apples-to-apples’ comparison with Euclidean, heat kernel
rooted results.
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Notions of Wick rotation in (non-static) spacetimes

I Locally approximate smooth metrics with complex analytic metrics
gµν(z) [Moretti 2000, Strohmaier-Verch-Wollenberg 2002,
Gerard-Wrochna 2010]. Coordinate Wick rotation.

I Use Vielbein frame gµν = ηIJE I
µE J

ν , and complexify ηIJ. Leads to
“admissible complex metrics” [Louko-Sorkin 1997, Samuel 2016,
Kontsevich-Segal 2021, Visser 2022].

I Real rank-1 deformation of Lorentzian metric: gεµν = gµν + 2εnµnν ,
nµ unit time-like and 1

2 6= ε ∈ [0,1]; ε = 1
2 singular. Corresponds to

rescaling of the lapse, N2 7→ (1− 2ε)N2 [Baldazzi et al. 2018] and
implements a Wick-flip, N2 7→ −N2. [Dasgupta-Loll 2001].

Here: Wick rotation in the lapse N 7→ e−iθN, θ ∈ (0, π) on a real manifold.
Amounts to gθµν = gµν + (1− e−2iθ)nµnν , a complex, metric dependent
rank-1 deformation [Candelas-Raine, 1979, use external Vµ],
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Lapse Wick rotation
Take foliated 1+d manifolds M as basic. Come with a temporal
function T (y) whose level surfaces T = t are d dim. hypersurfaces
Σt . ADM decomposition of metric yields triples (N,N i , gij)εg with

gεgµν(y)dyµdyν = εgN2dt2 + gij(dx i + N idt)(dx j + N jdt) ,

in coords. yµ = (t , x i), i = 1, . . . ,d .
The foliation frame (Ndt ,e1, . . .ed ), ei = dx i + N idt , comprises
1+d 1-forms that are coordinate independent (inv. under passive
diffeos) for fixed T . With Ndt = nµdyµ the complexified metric

gθµν = gεgµν − (εg + e−2iθ)nµnν , θ ∈ [0, π] ,

is a
(0

2

)
tensor under passive diffeos for fixed T.
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Changing the foliation
Changing T to T ′ (i.e. a new scalar function on M) amounts to changing
the foliation. Under these active diffeos the 1-forms (Ndt ,e1, . . . ,ed ) are
not invariant. E.g.

N ′dt ′ =
N√(

∂t′
∂t − ∂t′

∂x i N i
)2

+ εgN2 ∂t′
∂x j

∂t′
∂xk gjk

[(∂t ′

∂t
− ∂t ′

∂x i N i
)

dt +
∂t ′

∂x i ei
]
.

The same applies to (e1, . . . ,ed ) and the 1-forms E I = E I
µdyµ in a Vielbein

formulation, gεg
µν = η

εg
IJ E I

µE J
ν . On a foliated real manifold complexification of

the metric always refers to a fiducial foliation {Σ}. Write, √εg = +1,+i for
εg = +1,−1, and define the lapse Wick rotation wrt {Σ} by

wΣ : (N,N i , gij)εg 7→ (iε−1/2
g e−iθN,N i , gij)εg , θ ∈ [0, π] .

Result: The Wick flip relating θ = 0 to θ = π/2 is independent of
the fiducial foliation.
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Induced complexified metric
Set Nθ = e−iθN such that wΣ(εgN2dt2 + . . .) = −N2

θdt2 + . . .. Then:

N ′θ =
Nθ√(

∂t′
∂t − ∂t′

∂x i N i
)2

− N2
θ
∂t′
∂x j

∂t′
∂xk gjk

,

N i ′
θ = −

(
∂x′ i

∂t − ∂x′ i

∂x j N j
)(

∂t′
∂t − ∂t′

∂xk Nk
)
− N2

θ
∂x′ i

∂x j
∂t′

∂xk gjk(
∂t′
∂t − ∂t′

∂x j N j
)2

− N2
θ
∂t′
∂x j

∂t′
∂xk gjk

,

gθ ′ij =
( ∂xk

∂x ′ i
+

∂t
∂x ′ i

Nk
)( ∂x l

∂x ′ j
+

∂t
∂x ′ j

N l
)

gkl − N2
θ
∂t
∂x ′ i

∂t
∂x ′ j

define a complexified metric gθ

gθ = −N ′θ
2dt ′2 + g′θij(dx ′i + N ′θ

idt ′)(dx ′j + N ′θ
jdt ′)

= −N2
θdt2 + gij(dx i + N idt)(dx j + N jdt) .

Full, real Diffeomorphism group is realized nonlinearly.
A lapse Wick rotation for the FRG Niedermaier



Complexified scalar field action
Consider 1 + d form of scalar field action:

Sεg [χ,g] =

∫
dtddx

√
g
{ 1

2N
e0(χ)2 +

εg
2

Ngij∂iχ∂jχ+ εgN U(χ)
}
,

where S+ > 0 for U(χ) ≥ 0, and e0 = ∂t − L~N . In fiducial foliation define
complexified action

Sθ[χ,g] := S+[χ,g]|N 7→ie−iθN = −iS−[χ,g]|N 7→eiθN

= sin θS+[χ,g]− i cos θS−[χ,g] .

Exponential is damping e−Sθ

= e− sin θS+e i cos θS− for θ ∈ (0, π). The
underlying complex metric is admissible in fiducial foliation.

Result: Sθ is invariant under the nonlinear (Nθ,N i , gij)− 7→
(N ′θ,N

′
θ

i , gθ ′ij)− transfs. Its real part ReSθ remains positive.
Hence gθ is admissible (in all foliations).
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Complexified Hessian
Prepare (δ2Sθ/δχδχ)(ϕ) =: iDθ(ϕ)11, 11=(N

√
g)−1δ(t−t ′)δd (x−x ′).

Explicitly

iDθ= ieiθ∇2
t + ie−iθ[−∇2

s + U ′′(ϕ)] = sin θD+ + i cos θD− ,

∇2
t :=

√
g−1N−1e0

(√
gN−1e0

)
, ∇2

s := N−1√g−1∂i
(
N
√

ggij∂j
)
.

Here, D+,D− are the Euclidean, Lorentzian signature Hessians.
Note:

D+ > 0 for U ′′(ϕ) ≥ 0 is elliptic,
D− is hyperbolic wave operator.

[D+,D−] 6= 0 !

Math challenge later on: make sense out of

e−s iDθ , s > 0 ,

[iDθ + ie−iθz]−1 , z > 0 .
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Lapse Wick rotated FRG
Want to compare Euclidean with Lorentzian signature results on
‘apples-to-apples’ basis. From now on take Euclidean signature as
basic, εg = +1 in wΣ, i.e. N 7→ ie−iθN.

I Aim at interpolating versions of generating functionals W θ
k , Γθk ,

θ ∈ (0, π).

I Assume Euclidean functional integral for W+,k = W π/2
k to be

well defined, leading to FRGs for W+,k =W π/2
k and Γ+,k =Γ

π/2
k .

I Then: by the same standards of rigor, the functional integral for
W θ

k and the FRGs for W θ
k , Γθk are well-defined, for all θ ∈ (0, π).

Consider wlog scalar fields in background field formalism,
W θ

k = W θ
k [J, ϕ], Γθk [φ, ϕ].
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Where to place the phases
Action: Admissibility in functional integral ensured by
Sθ[χ,g] := S+[χ,g]|N 7→ie−iθN = sin θS+[χ,g]− i cos θS−[χ,g].

Source term: J · χ =
∫
dtddx(N

√
g)Jχ)(t , x) gives:

J · χ|N 7→ie−iθN = ie−iθJ · χ.

Modulator term: Set
R+,k (t , x ; t ′, x ′)|N 7→ie−iθN =: −ieiθRθ

k (t , x ; t ′, x ′), as limiting
11 = (N

√
g)−1δ(t − t ′)δd (x − x ′) is not phase modified.

Legendre transform: Want Γθk [φ, ϕ] = Sθ[ϕ+ φ] + O(~). Need:

Γθk [φ, ϕ] = ie−iθ
{

Jθk [φ, ϕ]−W θ
k [Jθk [φ, ϕ], ϕ]− 1

2φ · R
θ
k · φ

}
,

δW θ
k

δJ

∣∣∣
J=Jθk

= φ, δΓθk
δφ = ie−iθ{Jθk − Rθ

k · φ
}

.
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Lapse Wick rotated Wetterich Equation
Starting from

e
ie−iθ

~ W θ
k [J,ϕ] =

∫
dµ(χ) e−

1
~Sθk [χ,ϕ]+ ie−iθ

~ J·χ , θ ∈ (0, π) ,

obtain

∂k Γθk [φ, ϕ] =
~
2

ie−iθTr
{
∂kRθ

k (ϕ) ·Gθ
k [φ, ϕ]

}
[ δ2Γθk
δφδφ

+ ie−iθRθ
k

]
·Gθ

k = 11 , θ ∈ (0, π) .

Normalizations are such that the Euclidean, Lorentzian limits are:
Γ
π/2
k = Γ+,k , limθ→0+ Γθk = −iΓ−,k (whenever defined).
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Perturbative solution
I Set ϕ = 0 for simplicity. Inserting Ansätze

Γθk [φ] = Sθ[φ] +
∑
n≥1

~nΓθk,n[φ] , Gθ
k [φ] = Gθ

k,0[φ] +
∑
n≥1

~nGθ
k,n[φ] ,

gives recursive system of flow equations

[(Sθ)(2) + ie−iθRθ
k ] · Gθ

k,0 = 11 ,

[(Sθ)(2) + ie−iθRθ
k ] · Gθ

k,n[ϕ] = −
n∑

l=1

(Γθk,l )
(2) · Gθ

k,n−l , n ≥ 1 ,

k∂k Γθk,n =
1
2

ie−iθTr
{

k∂k Rθ
k · Gθ

k,n−1
}
, n ≥ 1 .

I In principle this iteratively defines
Gθ

k ,0 → Γθk ,1 → Gθ
k ,1 → Γθk ,2 → . . .
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Solution at one-loop by “heat kernel” resolution
Integrating the ∂k Γθk ,1 equation between k = µ,Λ get formally

Γθµ,1 = ΓθΛ,1 −
~
2

ie−iθ
∫ Λ

µ

dk Tr
{
∂k Rθ

k · [(Sθ)(2) + ie−iθRθ
k ]
}

= ΓθΛ,1 +
~
2

Tr ln
[
(Sθ)(2) + ie−iθRθ

µ

]
− ~

2
Tr ln

[
(Sθ)(2) + ie−iθRθ

Λ

]
.

The un-regularized trace-log of the Rk regularized Hessian occurs.
In FRG practice on replaces this by
the regularized trace-log of the Rk un-regularized Hessian.
Here, set

F θ
µ,Λ(∆) := ln

(
∆ + ie−θRµ(∆)

∆ + ie−θRΛ(∆)

)
!
=

∫ ∞
0

ds F̃ θ
µ,Λ(s)e−s∆ , Re∆ > 0 .
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Digression: regulator triples

I Consider regulators that are differences:
F θ
µ,Λ(∆) = f θΛ (∆)− f θµ(∆), 0 ≤ µ ≤ Λ, Re∆ > 0,
µ RG scale, Λ UV cutoff. Write ∂µF θ

µ, · (∆) = −∂µf θµ(∆).

I Via f θk (∆) = − ln[1 + ie−iθk2r(∆/k2)/∆] get correspondence
to FRG type r(·)

I Need also inverse Laplace transform f̃ θk (s), s heat kernel time,

and its inverse Laplace transform ˜̃f θk (z), z resolvent variable.

I Want for k →∞ the behavior: f θk (∆) ∼ ln(∆/k2), f̃ θk (s) ∼ −1/s,
˜̃f θk (z) ∼ −1. Simple closed forms for triples: f θk (∆), f̃ θk (s), ˜̃f θk (z).

Example:

˜̃f θk (z) = − k2

k2+z
e−z/k2

gives Ei(·) expressions for f̃ θs (s) and f θk (∆) .
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Regularized trace-log and pre-EPA
Write (Sθ)(2) = iDθ11 and interpret ∆ as iDθ, the Rk un-regularized
Hessian. For suitable Spec(iDθ)︸ ︷︷ ︸

?! in right half plane ?!

adopt an operator version to write

Γθµ,1 = ΓθΛ,1 +
~
2

TrF θ
µ,Λ(iDθ) = Γθµ,1 +

~
2

∫ ∞
0

ds F̃ θ
µ,Λ(s) Tr[e−isDθ︸ ︷︷ ︸

?! semi-group ?!

]

By ∂/∂µ and µ 7→ k , U ′′(ϕ) 7→ U ′′k (ϕ) get a precursor of flow in
Effective Potential Approximation

ieiθ
∫

dtddx N
√

g ∂kUk

=
~
2

∫ ∞
0

ds ∂k F̃ θ
k ,·(s)

∫
dtddx N

√
g

?! does e−isDθ have a kernel ?!︷ ︸︸ ︷
K θ

s (t , x ; t , x)
∣∣∣
U′′ 7→U′′k

,
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The lapse Wick rotated heat kernel

Theorem (R.B, M.N, in preparation, 70 pp)

Let iDθ = sin θD+ + i cos θD− be the Hessian of Sθ with
θ ∈ (0, π/2]. Then:
(a) iDθ is an unbounded operator on a Sobolev domain dense in

L2. The same holds for its adjoint, and [iDθ]∗ = iDπ−θ,
including domains.

(b) The spectrum of iDθ is contained in a wedge of the right half
plane, |argλ| ≤ π/2− θ.

(c) The resolvent [iDθ + ie−iθz]−1 exists for |arg(ie−iθz)| < π/2+θ
(z > 0 in particular) and obeys norm bounds that qualify iDθ
as the generator of an unique analytic semigroup, ζ 7→ e−ζ iDθ ,
|argζ| < θ.
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Theorem cont.

(d) e−siDθ , s ≥ 0, is a strongly continuous semigroup on L2, which
is unique and contractive, ‖e−siDθ‖ ≤ 1, s ≥ 0.

(e) e−siDθ , s > 0, acts as an integral operator on L2 functions with
a kernel K θ

s (t , x ; t ′, x ′) that is jointly smooth in (s, t , x , t ′, x ′),
and obeys K θ

s (t , x ; t ′, x ′)∗ = K π−θ
s (t ′, x ′; t , x).

(f) The kernel admits an asymptotic expansion of the form

K θ
s (t , x ;t ′, x ′) � (−ieiθ)

d−1
2

(4πs)
d+1

2

e−
1
2sσθ(t ,x ;t ′,x ′)

∑
n≥0

Aθn(t , x ;t ′,x ′)(ie−iθs)n,

where σθ is the Synge function of gθ and Aθn = An|N 7→ie−iθN are
the standard heat kernel coeffs evaluated on gθ. On the RHS
the termwise limit θ → 0+ is trivial.
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Heat kernel induced Green’s function
Given K θ

s , θ ∈ (0, π/2] one can define a unique Green’s function via

Gθ
z(t , x ; t ′, x ′) =

∫ ∞
0

ds e−sie−iθzK θ
s (t , x ; t ′, x ′) , z > 0 .

It solves [iDθ + ie−iθz]Gθ
z = 11, and property (f) of K θ

s implies

Gθ
z �

2

(4π)
d+1

2

∑
n≥0

Aθn
( 2z

ie−iθσθ

) d−1
2 −n

K d−1
2 −n

(
[2z ie−iθσθ]1/2

)
� Hadamard parametrix as σθ → 0

However, not every solution of [iDθ + ie−iθz]Gθ
z = 11, having the

Hadamard property in σθ derives from a heat kernel.
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Green’s function form of trace-log and pre-EPA
Assume that F̃ θ

µ,Λ(s) admits a realization as

F̃ θ
µ,Λ(s) =

∫ ∞
0

dz e−sie−iθz ˜̃F θ

µ,Λ(z) , z > 0 .

Then, the trace-log reads

Γθµ,1 = ΓθΛ,1 +
~
2

TrF θ
µ,Λ(iDθ) = Γθµ,1 +

~
2

∫ ∞
0

dz ˜̃F θ

µ,Λ(z) Tr[Gθ
z ] .

The pre-EPA reads

ieiθ
∫

dtddx N
√

g ∂kUk

=
~
2

∫
dtddx N

√
g
∫ ∞

0
dz ∂k

˜̃F θ

k ,·(z)Gθ
z(t , x ; t , x)

∣∣∣
U′′ 7→U′′k

,

Note: dz average of Gθ
z ’s coincidence limit is finite by construction.
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Beyond semigroup vacua
Not every (Wick rotated) Green’s function having the Hadamard property
derives from a (Wick rotated) heat kernel.

Reason: for the underlying homogeneous solutions the Hadamard
property only enforces positive frequency in the UV limit. Beyond the UV
limit solutions are typically admixtures of positive and negative frequency
waves. Upon (any) Wick rotation these become an admixture of
exponentially decaying and growing modes. The growing modes spoil L2

estimates in (t , x) and inverse Laplace transform in z.

Many physically relevant examples on cosmological backgrounds.

Proposal: Solve [iDθ + ie−iθz]Gθ
z = 11 directly and aim at ‘stand-alone’

Green’s function computational formalism.

Study here for spatially homogeneous cosmologies (Bianchi I).
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Bianchi I basics
Line element: ds2 = −N(t)2dt2 + gij (t)dx idx j . No need to diagonalize
gij (t). Extrinsic curvature Kij (t) := −(2N)−1∂t gij .

Relevance: Coupled to selfinteracting scalar field features prominently in
quiescent BKL scenario. Becomes velocity dominated (Kasner-like)
towards Big Bang. At late(r) times becomes isotropic (FRW).

Lapse Wick rotation: N(t) 7→ e−iθN(t); write V (t) := U ′′(ϕ)(t).

Homogeneous wave equation: After spatial Fourier transform
{∇2

t + e−2iθ[gij (t)pipj + V (t) + z]}T θ
z(t ,p) = 0, Re(z) > 0.

For θ = 0 physically relevant solutions approach a (positive frequency)
adiabatic vacuum of some order n as |p|2 := δijpipj →∞.
T θ=0

z (t ,p) � [2Ω
(n)
p (t)]−1 exp{−i

∫ t
t0

dt ′(Ng−1/2)(t ′)Ω
(n)
p (t ′)}[1 + O(|p|−2n)]

For finite |p| not positive frequency in general.
Hadamard property requires ‘n→∞’.
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‘Stand-alone’ Green’s function
Given T θ

z (t ,p) set T
θ
z(t ,p) := T θ=0

z (t ,p)∗|N 7→e−iθN and

Gθ
z(t , t ′,p) := θ(t−t ′)T θ

z (t ,p)T
θ
z(t ′,p) + θ(t ′−t)T θ

z (t ′,p)T
θ
z(t ,p).

This solves [iDθ + ie−iθz]Gθ
z = 11 without underlying heat kernel K θ

s .
Further, Gθz (t ,p) := g(t)−1/2Gθ

z(t , t ,p) solves a Gelfand-Dickey
equation

2Gθz (ieiθN−1∂t )
2Gθz − (eiθN−1∂tGθz )2 + 4[wz + vθ](Gθz )1 = 11 ,

wz := g(t)ijpipj + z , vθ(t) := V (t) + e2iθ
[1

2
N−1∂tK −

1
4

K 2
]
,

wit K = gijKij . Regular nonlinear ODE for all θ ∈ [0, π]; defines Gθz
irrespective of positive frequency assumption.
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‘Stand-alone’ asymptotics
Result: Gθz (t ,p) admits a ‘large wz ’ asymptotic expansion

Gθz (t ,p)� 1
2
√

wz

∑
n≥0

(−)nGθz,n(t ,p) , wz := g(t)ijpipj + z ,

Gθz,n(t ,p) =
1

wn
z

n∑
m=0

1
wm

z
kn(t)i1i2...impi1pi2 ...pim ,

where kn(t) is a eiθN−1∂t differential polynomial in V , K ij , and

Gθz,1 =
vθ

2wz
+

5
32

e2iθ (N−1∂twz)2

w3
z

− 1
8

e2iθ (N−1∂t )
2wz

w2
z

.

Further, a nonrecursive formula for Gθz,n(t ,p), n ≥ 2, in terms of Gθz,1
exists.
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EPA for Bianchi I backgrounds
Can convert Green’s function version of pre-EPA into EPA proper

∂kUk = −ieiθ ~
2

√
g(t)

∫
ddp

(2π)d

∫ ∞
0

dz ∂k
˜̃F θ

k ,·(z)Gθz (t ,p)
∣∣∣
U′′ 7→U′′k

,

where either ϕ = ϕ(t) or Uk (·) = Uk (t , ·) for consistency.

I RHS is exactly characterized by Gelfand-Dickey eqn, for all θ ∈ [0, π],
irrespective of positive frequency assumption.

I Asymptotic expansion leads to doable ddp integrals and expression
in terms of kn(t). Covers the UV regime in a way consistent with very
formal use of coeffs Aθn of non-existent heat kernel.

I Cover IR aspects via small p expansion, etc.
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Conclusions
Wick rotation in the lapse provides viable route to define a near Lorentzian
FRG that maintains ‘covariance’ and ‘finiteness of RHS’, and allows direct
comparison with its Euclidean counterpart.

I Asymptotic expansions carry over to Wick rotated case and allow
computational access to strictly Lorentzian UV regime.

I Wick rotated semigroup and resolvent and their kernels can
rigorously be constructed. The θ → 0+ limit is trivial for asymptotic
expansions but highly nontrivial for exact semigroup or resolvent.

I Not every (Wick rotated) Green’s function having the Hadamard
property derives from a (Wick rotated) heat kernel. A stand-alone
Green’s function formalism is available for spatially homogeneous
backgrounds.

Next steps: Green’s functions beyond UV asymptotic expansions, ...
beyond scalar fields, ...
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