Asymptotically safe gravity-matter systems: functional and lattice perspectives

Quantum Spacetime and the Renormalization Group 2023

Marc Schiffer, Perimeter Institute
October 4, 2023

Motivation: towards combining functional and lattice methods

- Functional methods:
- Lattice methods:

Motivation: towards combining functional and lattice methods

- Functional methods:
- Lattice methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$

Motivation: towards combining functional and lattice methods

- Functional methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$
- Lattice methods:
- extract lattice correlators, order parameters, ...
- AS: continuous phase transition

Motivation: towards combining functional and lattice methods

- Functional methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$
- need truncations, regulator, gauge fixing, ...
- Lattice methods:
- extract lattice correlators, order parameters, ...
- AS: continuous phase transition
- finite size effects, extrapolations, "guessing" of relevant parameters, ...

Motivation: towards combining functional and lattice methods

- Functional methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$
- need truncations, regulator, gauge fixing, ...
- Lattice methods:
- extract lattice correlators, order parameters, ...
- AS: continuous phase transition
- finite size effects, extrapolations, "guessing" of relevant parameters, ...

Motivation: towards combining functional and lattice methods

- Functional methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$
- need truncations, regulator, gauge fixing, ...
- Lattice methods:
- extract lattice correlators, order parameters, ...
- AS: continuous phase transition
- finite size effects, extrapolations, "guessing" of relevant parameters, ...

Motivation: towards combining functional and lattice methods

- Functional methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$
- need truncations, regulator, gauge fixing, ...
- Lattice methods:
- extract lattice correlators, order parameters, ...
- AS: continuous phase transition
- finite size effects, extrapolations, "guessing" of relevant parameters, ...

Use different methods in concerted fashion to extract physical features of asymptotically safe quantum gravity.

Outline

- Asymptotically safe gravity and matter

Outline

- Asymptotically safe gravity and matter
- FRG studies
- The weak-gravity bound
- The weak-gravity bound for scalars [de Brito, Knorr, MS; 2023]

Outline

- Asymptotically safe gravity and matter
- FRG studies
- The weak-gravity bound
- The weak-gravity bound for scalars [de Brito, Knorr, MS; 2023]
- EDT studies
- Newtonian binding [Dai, Laiho, MS, Unmuth-Yockey; 2021]
- de Sitter volume profile [Dai, Freeman, Laiho, MS, Unmuth-Yockey; 2023]

Outline

- Asymptotically safe gravity and matter
- FRG studies
- The weak-gravity bound
- The weak-gravity bound for scalars [de Brito, Knorr, MS; 2023]
- EDT studies
- Newtonian binding [Dai, Laiho, MS, Unmuth-Yockey; 2021]
- de Sitter volume profile
[Dai, Freeman, Laiho, MS, Unmuth-Yockey; 2023]
- Outlook: comparing EDT and FRG studies
- Specifically in asymptotically safe gravity:
- There exist indications that metric fluctuations must not be too strong.
- Interacting nature of gravity induces novel interactions in the matter sector. [Eichhorn and Gies, 2011], [Eichhorn, 2012], [Meibohm and Pawlowski, 2016], [Eichhorn, Held and Pawlowski, 2016], [Christiansen and Eichhorn, 2017], [Eichhorn and Held, 2017], [Eichhorn, Lippoldt and Skinjar, 2017] [Eichhorn, Lippoldt and MS, 2018]
- Beyond the weak-gravity regime, metric fluctuations can induce novel divergences in these interactions.

Effect of gravity on matter: Induced interactions

- Example: Shift-symmetric scalar Φ

$$
X=\frac{Z}{k^{4}} \frac{1}{2}\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi\right)
$$

Effect of gravity on matter: Induced interactions

- Example: Shift-symmetric scalar Φ
$X=\frac{Z}{k^{4}} \frac{1}{2}\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi\right)$
- From kinetic term:

$$
\Gamma_{k}^{\Gamma_{k}^{\mathrm{int}}=K_{2} \int \mathrm{~d}^{4} x \sqrt{g} k^{4} X^{2} \text { in } \mathrm{d}^{4} x \sqrt{g} k^{4} X,}
$$

Effect of gravity on matter: Induced interactions

- Example: Shift-symmetric scalar Φ
$X=\frac{Z}{k^{4}} \frac{1}{2}\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi\right)$
- From kinetic term:

$$
\Gamma_{k}^{\mathrm{int}}=K_{2} \int \mathrm{~d}^{4} x \sqrt{g} k^{4} X^{2}
$$

- Schematically:

$$
\beta_{K_{2}}=C_{0}(g)+C_{1}(g) K_{2}+C_{2} K_{2}^{2}
$$

- $K_{2, *}=$
$-\frac{1}{2 C_{2}}\left(C_{1}(g) \pm \sqrt{C_{1}^{2}(g)-4 C_{0}(g) C_{2}}\right)$

Effect of gravity on matter: Induced interactions

- Example: Shift-symmetric scalar Φ
$X=\frac{Z}{k^{4}} \frac{1}{2}\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi\right)$
- From kinetic term:

$$
\Gamma_{k}^{\mathrm{int}}=K_{2} \int \mathrm{~d}^{4} x \sqrt{g} k^{4} X^{2}
$$

- Schematically:

$$
\beta_{K_{2}}=C_{0}(g)+C_{1}(g) K_{2}+C_{2} K_{2}^{2}
$$

- $K_{2, *}=$
$-\frac{1}{2 C_{2}}\left(C_{1}(g) \pm \sqrt{C_{1}^{2}(g)-4 C_{0}(g) C_{2}}\right)$
- WGB from fixed-point collision
[Eichhorn; 2012], [Eichhorn, Held; 2017],

The WGB

The WGB

- WGB:

[Eichhorn, MS; 2022] λ
- nice feature; constrains gravitational dynamics
- together with gravitational fixed point: might rule out certain scenarios [Eichhorn, Held; 2017], [Christiansen, Eichhorn; 2017], [Eichhorn, MS; 2019], [de Brito, Eichhorn, Lino dos Santos; 2022],

The WGB

- WGB:

- nice feature; constrains gravitational dynamics
- together with gravitational fixed point: might rule out certain scenarios [Eichhorn, Held; 2017], [Christiansen, Eichhorn; 2017], [Eichhorn, MS; 2019], [de Brito, Eichhorn, Lino dos Santos; 2022],
- "non-perturbative effect"; large deviation from canonical mass dimension;
- might require larger truncations to properly understand

Induced shift-symmetric scalar interactions

$$
\Gamma_{k}^{\text {scal. }}=\int \mathrm{d}^{4} x \sqrt{g} k^{4} K(X), \quad \text { and } \quad K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n} ; g=0
$$

[Laporte, Locht, Pereira, Saueressig; 2022], [de Brito, Knorr, MS; 2023]

Induced shift-symmetric scalar interactions

$$
\Gamma_{k}^{\text {scal. }}=\int \mathrm{d}^{4} x \sqrt{g} k^{4} K(X), \quad \text { and } \quad K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n} ; g=0
$$

[de Brito, Knorr, MS; 2023]

- Key properties:
- $N_{\text {max }}$ fixed points

Induced shift-symmetric scalar interactions

$$
\Gamma_{k}^{\text {scal. }}=\int \mathrm{d}^{4} x \sqrt{g} k^{4} K(X), \quad \text { and } \quad K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n} ; g=0
$$

[de Brito, Knorr, MS; 2023]

- Key properties:
- $N_{\text {max }}$ fixed points
- $K_{2, *} \sim e^{-\# N_{\max }}$

Induced shift-symmetric scalar interactions

$$
\Gamma_{k}^{\text {scal. }}=\int \mathrm{d}^{4} x \sqrt{g} k^{4} K(X), \quad \text { and } \quad K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n} ; g=0
$$

[de Brito, Knorr, MS; 2023]

- Key properties:
- $N_{\text {max }}$ fixed points
- $K_{2, *} \sim e^{-\# N_{\max }}$
- $K_{n, *} \sim K_{2, *}$

Pure scalar system: Critical exponents

Pure scalar system: Critical exponents

- Focus on first interacting fixed point "NGFP1"

Pure scalar system: Critical exponents

- Focus on first interacting fixed point "NGFP1"

- Key properties:
- Relevant direction:

$$
\Theta_{\mathrm{rel}} \rightarrow 4
$$

- Real-valued irrelevant directions: $\Theta_{\text {irrel, }, n} \rightarrow-4 n$
- Complex pairs do not converge (yet?)

Pure scalar system: Critical exponents

- Focus on first interacting fixed point "NGFP1"

- Key properties:
- Relevant direction:

$$
\Theta_{\text {rel }} \rightarrow 4
$$

- Real-valued irrelevant directions: $\Theta_{\text {irrel, } n} \rightarrow-4 n$
- Complex pairs do not converge (yet?)

Key Conclusion

All interacting pure scalar fixed points seem spurious and artefacts of finite-order truncations

Gravity-scalar system: Expansion in X

Gravity-scalar system: Expansion in X

- Couple system minimally to gravity: $\Gamma_{k}=\Gamma_{k}^{\mathrm{EH}}+\Gamma_{k}^{\text {scal. }}, \quad \Lambda=0, \quad$ and $\quad g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}$
- Expand $K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n}$, as before
- Track (s)GFP as a function of g; explore WGB as result of fixed-point collision

Gravity-scalar system: Expansion in X

- Couple system minimally to gravity: $\Gamma_{k}=\Gamma_{k}^{\mathrm{EH}}+\Gamma_{k}^{\text {scal. }}, \quad \Lambda=0, \quad$ and $\quad g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}$
- Expand $K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n}$, as before
- Track (S)GFP as a function of g; explore WGB as result of fixed-point collision

Gravity-scalar system: Expansion in X

- Couple system minimally to gravity: $\Gamma_{k}=\Gamma_{k}^{\mathrm{EH}}+\Gamma_{k}^{\text {scal. }}, \quad \Lambda=0, \quad$ and $\quad g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}$
- Expand $K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n}$, as before
- Track (S)GFP as a function of g; explore WGB as result of fixed-point collision

Gravity-scalar system: Expansion in X

- Couple system minimally to gravity: $\Gamma_{k}=\Gamma_{k}^{\mathrm{EH}}+\Gamma_{k}^{\text {scal. }}, \quad \Lambda=0, \quad$ and $\quad g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}$
- Expand $K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n}$, as before
- Track (S)GFP as a function of g; explore WGB as result of fixed-point collision

Gravity-scalar system: Expansion in X

- Couple system minimally to gravity: $\Gamma_{k}=\Gamma_{k}^{\mathrm{EH}}+\Gamma_{k}^{\text {scal. }}, \quad \Lambda=0, \quad$ and $\quad g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}$
- Expand $K(X) \approx X+\sum_{n=2}^{N_{\max }} K_{n} X^{n}$, as before
- Track (S)GFP as a function of g; explore WGB as result of fixed-point collision

Gravity-scalar system: Expansion in X II

- No apparent convergence of $g_{\text {crit }}$
- For odd $N_{\text {max }}$: convergent and stable SGFP up to (at least) $g \approx 2$.
- WGB as result of FP collision: likely spurious
- New notion of WGB based on number of relevant directions

Induced matter interactions: Summary and outlook

- Study of induced interaction-structure in scalar-tensor theories
- Interacting fixed points of pure scalar system: likely spurious
- WGB from fixed-point collision in scalar sector: likely spurious

Induced matter interactions: Summary and outlook

- Study of induced interaction-structure in scalar-tensor theories
- Interacting fixed points of pure scalar system: likely spurious
- WGB from fixed-point collision in scalar sector: likely spurious
- Extend study to $U(1)$ gauge fields [de Brito, Knorr, Ms; wIP]
- Couple charged matter, investigate induced interactions at $e_{*} \neq 0 \quad[\mathrm{MS} ;$ WIP]

Motivation: towards combining functional and Lattice methods

- Functional methods:
- extract scale dependence of couplings/operators
- AS: $k \partial_{k} \vec{g}=0$
- need truncations, regulator, gauge fixing, ...
- Lattice methods:
- extract lattice correlators, order parameters, ...
- AS: continuous phase transition
- finite size effects, extrapolations, "guessing" of relevant parameters, ...

Use different methods in concerted fashion to extract physical features of asymptotically safe quantum gravity.

Evidence for asymptotic safety from Euclidean Dynamical Triangulations

- Discretization of spacetime in terms of triangulations

Evidence for asymptotic safety from Euclidean Dynamical Triangulations

- Discretization of spacetime in terms of triangulations

Evidence for asymptotic safety from Euclidean Dynamical Triangulations

- Discretization of spacetime in terms of triangulations

Evidence for asymptotic safety from Euclidean Dynamical Triangulations

- Discretization of spacetime in terms of triangulations

Evidence for asymptotic safety from Euclidean Dynamical Triangulations

- Discretization of spacetime in terms of triangulations

Evidence for asymptotic safety from Euclidean Dynamical Triangulations

- Discretization of spacetime in terms of triangulations
[Ambjgrn and Jurkiewicz, 1992], [Agishtein and Migdal, 1992],

$$
\int \mathcal{D} g e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} e^{-S_{\mathrm{ER}}}
$$

with Euclidean Einstein-Regge action $S_{\mathrm{ER}}=-\kappa_{2} N_{2}+\kappa_{4} N_{4}$ [Regge, 1961]

The Einstein-Regge action

- starting point: Einstein-Hilbert action

$$
S_{\mathrm{EH}}=-\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{~d}^{4} x \sqrt{g}(R-2 \Lambda)
$$

- Einstein-Regge action: [Rege, 1961]

$$
S_{\mathrm{ER}}=-\frac{1}{8 \pi G_{\mathrm{N}}}\left(\sum_{s_{2}} V_{s_{2}} \delta_{s_{2}}-\Lambda \sum_{s_{4}} V_{s_{4}}\right)=\kappa_{4} N_{4}-\kappa_{2} N_{2}
$$

Lattice quantum gravity in $d=4$

- Discretization of spacetime in terms of triangulations

$$
\int \mathcal{D} g e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \quad e^{-S_{\mathrm{ER}}}
$$

Lattice quantum gravity in $d=4$

- Discretization of spacetime in terms of triangulations

$$
\int \mathcal{D} g e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}}
$$

$$
e^{-S_{\mathrm{ER}}}
$$

- in $d=4$: no physical phase, no indications for higher-order transition in $\kappa_{2}-\kappa_{4}$ - space [Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994]
[Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]

Lattice quantum gravity in $d=4$

- Discretization of spacetime in terms of triangulations

$$
\int \mathcal{D} g e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}}
$$

$$
e^{-S_{\mathrm{ER}}}
$$

- in $d=4$: no physical phase, no indications for higher-order transition in $\kappa_{2}-\kappa_{4}$ - space [Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994] [Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]
- CDT: impose causal structure
[Ambjørn, Loll, 1998], [Ambjørn, Jurkiewicz, Loll, 2000],

Taken from [Loll, 2020]

Lattice quantum gravity in $d=4$

- Discretization of spacetime in terms of triangulations
$\int \mathcal{D} g e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}}\left[\prod_{j=1}^{N_{2}} \mathcal{O}\left(t_{j}\right)^{\beta}\right] e^{-S_{\mathrm{ER}}}$
- in $d=4$: no physical phase, no indications for higher-order transition in $\kappa_{2}-\kappa_{4}$ - space [Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994] [Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]
- CDT: impose causal structure [Ambjørn, Loll, 1998], [Ambjørn, Jurkiewicz, Loll, 2000],
- EDT: include measure term

[Ambjorn, Glaser, Goerlich, Jurkiewicz, 2013]
[Coumbe, Laiho, 2014]
[Bruegmann, Marinari, 1993],
[Laiho, Coumbe, 2011], [Ambjørn, Glaser, Goerlich, Jurkiewicz, 2013]

Lattice quantum gravity in $d=4$

- Discretization of spacetime in terms of triangulations
$\int \mathcal{D} g e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}}\left[\prod_{j=1}^{N_{2}} \mathcal{O}\left(t_{j}\right)^{\beta}\right] e^{-S_{\mathrm{ER}}}$
- in $d=4$: no physical phase, no indications for higher-order transition in $\kappa_{2}-\kappa_{4}$ - space [Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994] [Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]
- CDT: impose causal structure [Ambjørn, Loll, 1998], [Ambjørn, Jurkiewicz, Loll, 2000],
- EDT: include measure term

[Ambjorn, Glaser, Goerlich, Jurkiewicz, 2013]
[Coumbe, Laiho, 2014]
[Bruegmann, Marinari, 1993],
[Laiho, Coumbe, 2011], [Ambjørn, Glaser, Goerlich, Jurkiewicz, 2013]

Newtonian binding energy from EDT

- Use matter as probe for geometry [de Bakker, Smit, 1996], [Dai, Laiho, MS, Unmuth-Yockey; 2021]

Newtonian binding energy from EDT

- Use matter as probe for geometry [de Bakker, Smit, 1996], [Dai, Laiho, MS, Unmuth-Yockey;

2021]

- Renormalized mass from two-point functions
- Fit binding energy $E_{\mathrm{b}}=A m^{\alpha}$
- Continuum, non-relativistic limit:

$$
E_{\mathrm{b}}=\frac{G m^{5}}{4}(\text { in } d=4)
$$

Newtonian binding energy from EDT

- Use matter as probe for geometry [de Bakker, Smit, 1996], [Dai, Laiho, MS, Unmuth-Yockey;

2021]

- Renormalized mass from two-point functions
- Fit binding energy $E_{\mathrm{b}}=A m^{\alpha}$

Rejection free algorithm for EDT

Rejection free algorithm for EDT

- Challenge:
acceptance rate p drops:

$$
\begin{aligned}
& \kappa_{2}=3.0, \quad p \sim 3 \cdot 10^{-5} \\
& \kappa_{2}=3.8, \quad p \sim 5 \cdot 10^{-6} ; \\
& \kappa_{2}=4.5, \quad p \sim 1 \cdot 10^{-6}
\end{aligned}
$$

- Generalize algorithms used in studies of dynamical systems (e.g., growth of crystals)
[Norman, Cannon, 1972], [Bortz, Kalos, Lebowitz, 1975] [Gillespie, 1976], [Schulze, 2004],

- Proof of principle: 2d Ising model

Rejection free algorithm for EDT

- Challenge: acceptance rate p drops:

$$
\begin{aligned}
& \kappa_{2}=3.0, \quad p \sim 3 \cdot 10^{-5} ; \\
& \kappa_{2}=3.8, \quad p \sim 5 \cdot 10^{-6} ; \\
& \kappa_{2}=4.5, \quad p \sim 1 \cdot 10^{-6} ;
\end{aligned}
$$

- Generalize algorithms used in studies of dynamical systems (e.g., growth of crystals) [Norman, Cannon, 1972], [Bortz, Kalos, Lebowitz, 1975] [Gillespie, 1976], [Schulze, 2004],
- Proof of principle: 2d Ising model

Rejection free algorithm for EDT

- Challenge:

acceptance rate p drops:

$$
\begin{aligned}
& \kappa_{2}=3.0, \quad p \sim 3 \cdot 10^{-5} ; \\
& \kappa_{2}=3.8, \quad p \sim 5 \cdot 10^{-6} ; \\
& \kappa_{2}=4.5, \quad p \sim 1 \cdot 10^{-6} ;
\end{aligned}
$$

- Generalize algorithms used in studies of dynamical systems (e.g., growth of crystals) [Norman, Cannon, 1972], [Bortz, Kalos, Lebowitz, 1975] [Gillespie, 1976], [Schulze, 2004],
- Proof of principle: 2d Ising model

Significant speedup: allows to simulate efficiently at larger κ_{2} (finer lattices)

Towards a de Sitter universe in EDT?

- Shelling function $n_{4}(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.

Towards a de Sitter universe in EDT?

- Shelling function $n_{4}(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.
- For de Sitter with $d_{H}=4$:

$$
n_{4}(\tau) \sim \cos ^{3}(\tau)
$$

Towards a de Sitter universe in EDT?

- Shelling function $n_{4}(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.
- For de Sitter with $d_{H}=4$:

$$
n_{4}(\tau) \sim \cos ^{3}(\tau)
$$

- Peak-height: order parameter of AB-transition

Towards a de Sitter universe in EDT?

- Shelling function $n_{4}(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.
- For de Sitter with $d_{H}=4$:

$$
n_{4}(\tau) \sim \cos ^{3}(\tau)
$$

- Peak-height: order parameter of AB-transition

Towards a de Sitter universe in EDT?

- Shelling function $n_{4}(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.
- For de Sitter with $d_{H}=4$:

$$
n_{4}(\tau) \sim \cos ^{3}(\tau)
$$

- Peak-height: order parameter of AB-transition

[Dai, Freeman, Laiho, MS, Unmuth-Yockey; 2023]

Summary and Outlook

- Evidence that EDT might be suitable tool to discover asymptotic safety
- Emergence of non-relativistic limit consistent with $d=4$
- Emergence of de Sitter volume profile
- Efficient algorithm to simulate finer lattices

Summary and Outlook

- Evidence that EDT might be suitable tool to discover asymptotic safety
- Emergence of non-relativistic limit consistent with $d=4$
- Emergence of de Sitter volume profile
- Efficient algorithm to simulate finer lattices
- Update spectral and Hausdorff dimensions, relative lattice spacings, ...
- Study dynamical matter in EDT

Summary and Outlook

- Evidence that EDT might be suitable tool to discover asymptotic safety
- Emergence of non-relativistic limit consistent with $d=4$
- Emergence of de Sitter volume profile
- Efficient algorithm to simulate finer lattices
- Update spectral and Hausdorff dimensions, relative lattice spacings, ...
- Study dynamical matter in EDT
- Extract critical exponent of scalar mass
[Jha, Laiho, Unmuth-Yockey; 2018]

$$
\theta_{m} \sim \frac{\mathrm{~d} \ln \left(m^{2} / m_{0}^{2}\right)}{\mathrm{d} \ln a}
$$

and compare with FRG results
[Percacci, Vacca; 2015], [Oda, Yamada; 2015], [Eichhorn, Hamada, Lumma, Yamada; 2017]
[Pawlowski, Reichert, Wetterich, Yamada; 2018],

Summary and Outlook

- Evidence that EDT might be suitable tool to discover asymptotic safety
- Emergence of non-relativistic limit consistent with $d=4$
- Emergence of de Sitter volume profile
- Efficient algorithm to simulate finer lattices
- Update spectral and Hausdorff dimensions, relative lattice spacings, ...
- Study dynamical matter in EDT
- Extract critical exponent of scalar mass
[Jha, Laiho, Unmuth-Yockey; 2018]

$$
\theta_{m} \sim \frac{\mathrm{~d} \ln \left(m^{2} / m_{0}^{2}\right)}{\mathrm{d} \ln a}
$$

and compare with FRG results
[Percacci, Vacca; 2015], [Oda, Yamada; 2015], [Eichhorn, Hamada, Lumma, Yamada; 2017]
[Pawlowski, Reichert, Wetterich, Yamada; 2018],
Stay tuned! Thank you for your attention!

Pure scalar system: Eigenvectors

- Focus on relevant direction $v_{\text {Rel }}$ of NGFP1
- $v_{\text {Rel }}^{(l)}$ points in direction of K_{l+1}

- Procedure: [Kluth, Litim; 2020]
- Rescale couplings s.t. rows and columns of matrix of EV's are normalized \Rightarrow all K_{n} contribute equally to system of EV's
- Key properties:
- Overlap with $K_{l<N_{\max }}$: decreases rapidly
- Most dominant overlap with $v_{\text {Rel }}: K_{N_{\text {max }}}$
- If existent:

FP is highly
non-perturbative

Pure scalar system: Eigenperturbations

- Since $K_{2, *} \rightarrow 0$:
understand Eigenperturbations of NGFP1 by perturbing around GFP;

$$
K(X)=X+\epsilon e^{-\Theta t} \delta K, \quad \eta_{\Phi}=0+\epsilon e^{-\Theta t} \delta \eta_{\Phi}
$$

At order ϵ : Flow equation is inhomogeneous differential equation for δK

- Absorb $\delta \eta_{\Phi}$ by shift $\delta \tilde{K}=\delta K-\delta \eta_{\Phi}(a+b X)$ (for $\Theta \neq 0$ and $\left.\Theta \neq 4\right)$.
- Bring in Sturm-Liouville form (with $y \sim X$):

$$
\partial_{y}\left[p(y) \delta \tilde{K}^{\prime}(y)\right]=-\lambda w(y) \delta \tilde{K}(y)
$$

with $\quad p(y)=y^{2} e^{-y} \geq 0, \quad w(y)=y e^{-y} \geq 0, \quad \lambda=1-\frac{\Theta}{4}$.

- Expect discrete Eigenspectrum for λ, which is bounded from below; Corresponding Eigenfunctions: square integrable with respect to measure $w(y)$.

Pure scalar system: Eigenperturbations II

- Solutions (for $\Theta \neq 0$ and $\Theta \neq 4$):

$$
\delta \tilde{K}(y)=c_{11} F_{1}\left(\frac{\Theta}{4}-1 ; 2 \mid y\right)+c_{2} G_{1,2}^{2,0}\left(y \left\lvert\, \begin{array}{c}
2-\frac{\Theta}{4} \\
-1,0
\end{array}\right.\right),
$$

- Regularity at $y=0 \Rightarrow c_{2}=0$
- Normalisability w.r.t $w(y)$:
investigate asymptotic behavior of $\delta \tilde{K}(y)$:

$$
\delta \tilde{K}(y) \sim \frac{c_{1}}{\Gamma\left(\frac{\Theta}{4}-1\right)} y^{\frac{\Theta}{4}-3} e^{y}, \quad y \rightarrow \infty
$$

Not normalisable w.r.t. $w(y)$, except if $\Theta=4-4 n, \quad n \in \mathbb{N}, n>1$.

- Similarly,

$$
\begin{array}{lll}
\Theta=0: & \delta \tilde{K}(y) \sim & \frac{4 c_{1}}{(5-2 \gamma) y^{3}} e^{y},
\end{array} \begin{aligned}
& y \rightarrow \infty, \\
& \Theta=4:
\end{aligned} \quad \delta \tilde{K}(y) \sim \quad \frac{c_{1}}{y^{2}} e^{y}, \quad y \rightarrow \infty, ~ \text { Not normalisable w.r.t. } w(y) .
$$

- $\Theta=4$ can arise as eigenperturbation of GFP, but is not normalisable, hence should be discarded.

Gravity-scalar system: Expansion in g

- Alternative expansion $\left(\tilde{X}=\frac{3}{2}(16 \pi)^{2} X\right)$:

$$
K(X) \approx X+\left(\frac{1}{16 \pi}\right)^{2} \sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} L_{n}(\tilde{X}), \quad \text { and } \quad \eta_{\phi}=\sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} \eta_{n}
$$

Gravity-scalar system: Expansion in g

- Alternative expansion $\left(\tilde{X}=\frac{3}{2}(16 \pi)^{2} X\right)$:

$$
K(X) \approx X+\left(\frac{1}{16 \pi}\right)^{2} \sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} L_{n}(\tilde{X}), \quad \text { and } \quad \eta_{\phi}=\sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} \eta_{n}
$$

- Idea: expand in g, but keep global information on X

Gravity-scalar system: Expansion in g

- Alternative expansion $\left(\tilde{X}=\frac{3}{2}(16 \pi)^{2} X\right)$:

$$
K(X) \approx X+\left(\frac{1}{16 \pi}\right)^{2} \sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} L_{n}(\tilde{X}), \quad \text { and } \quad \eta_{\phi}=\sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} \eta_{n}
$$

- Idea: expand in g, but keep global information on X
- Example: $N_{\max }=1$:

$$
4 L_{1, *}-4 \tilde{X} L_{1, *}^{\prime}-\frac{2}{3} \eta_{1, *} \tilde{X}=-4\left(2 L_{1, *}^{\prime}+\tilde{X} L_{1, *}^{\prime \prime}\right) .
$$

Regularity + non-exponential growth for $\tilde{X} \rightarrow \infty: L_{1, *}=0$ and $\eta_{1, *}=0$.

Gravity-scalar system: Expansion in g

- Alternative expansion $\left(\tilde{X}=\frac{3}{2}(16 \pi)^{2} X\right)$:

$$
K(X) \approx X+\left(\frac{1}{16 \pi}\right)^{2} \sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} L_{n}(\tilde{X}), \quad \text { and } \quad \eta_{\phi}=\sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} \eta_{n}
$$

- Idea: expand in g, but keep global information on X
- Example: $N_{\max }=1$:

$$
4 L_{1, *}-4 \tilde{X} L_{1, *}^{\prime}-\frac{2}{3} \eta_{1, *} \tilde{X}=-4\left(2 L_{1, *}^{\prime}+\tilde{X} L_{1, *}^{\prime \prime}\right) .
$$

Regularity + non-exponential growth for $\tilde{X} \rightarrow \infty: L_{1, *}=0$ and $\eta_{1, *}=0$.

- Higher orders:

$$
L_{2, *}(\tilde{X})=-\frac{32}{9} \tilde{X}^{2}, \quad \eta_{2, *}=-128, \quad \text { generally } \quad L_{n, *}(\tilde{X})=\sum_{i=2}^{n} \ell_{n, i} \tilde{X}^{i}
$$

Gravity-scalar system: Expansion in g

- Alternative expansion $\left(\tilde{X}=\frac{3}{2}(16 \pi)^{2} X\right)$:

$$
K(X) \approx X+\left(\frac{1}{16 \pi}\right)^{2} \sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} L_{n}(\tilde{X}), \quad \text { and } \quad \eta_{\phi}=\sum_{n=1}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} \eta_{n}
$$

- Idea: expand in g, but keep global information on X
- Example: $N_{\max }=1$:

$$
4 L_{1, *}-4 \tilde{X} L_{1, *}^{\prime}-\frac{2}{3} \eta_{1, *} \tilde{X}=-4\left(2 L_{1, *}^{\prime}+\tilde{X} L_{1, *}^{\prime \prime}\right) .
$$

Regularity + non-exponential growth for $\tilde{X} \rightarrow \infty: L_{1, *}=0$ and $\eta_{1, *}=0$.

- Higher orders:

$$
L_{2, *}(\tilde{X})=-\frac{32}{9} \tilde{X}^{2}, \quad \eta_{2, *}=-128, \quad \text { generally } \quad L_{n, *}(\tilde{X})=\sum_{i=2}^{n} \ell_{n, i} \tilde{X}^{i}
$$

- Unfortunately, no global X-information
- But: Regularity + non-exponential growth fixes all constants of integration

Gravity-scalar system: Combined expansion

- Use combined expansion to capture global X dependence:

$$
K(X) \approx X+\sum_{n=0}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} M_{n}(\hat{X}), \quad \text { with } \hat{X}=16 \pi g X
$$

- Rather complicated expression; Only achieved up to M_{2}.

Gravity-scalar system: Combined expansion

- Use combined expansion to capture global X dependence:

$$
K(X) \approx X+\sum_{n=0}^{N_{\max }}\left(\frac{g}{16 \pi}\right)^{n} M_{n}(\hat{X}), \quad \text { with } \hat{X}=16 \pi g X
$$

- Rather complicated expression; Only achieved up to M_{2}.
- Common feature:
divergence at $\hat{X}=1$

$$
M_{n, *}^{\text {pole }}(\hat{X}) \sim \frac{\sqrt{2}(-6)^{n+1} \mathcal{B}_{n}}{(1-\hat{X})^{3(n-1)+3 / 2}}
$$

- Nature of pole: likely off-shell

Gravity-scalar system: Analysis of truncation error

Gravity-scalar system: Analysis of truncation error

- Upon expansion of $K(X)$ to finite order:

$$
\Delta(X, g)=\left|\frac{\mathrm{LHS}-\mathrm{RHS}}{\mathrm{LHS}}\right|_{*} \neq 0
$$

Gravity-scalar system: Analysis of truncation error

- Upon expansion of $K(X)$ to finite order:

$$
\Delta(X, g)=\left|\frac{\mathrm{LHS}-\mathrm{RHS}}{\mathrm{LHS}}\right|_{*} \neq 0
$$

Ising validation I

Ising validation II

