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Goal : map
out the space of QFTS and develop

non perturbative
methods to computetheirobservables .

•
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Bootstrap approach : bound the space of theories by

imposing consistency conditions on physical
observables .

Strategy : extend recent success in CFT to QFT .
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Figure 6. The first two Regge trajectories in 10d for N=30 and L=200. The error bars represent
the widths and the resonances lie on curved trajectories that scale approximately like !1.3. More
details in appendix F.

can only resolve a few of these. As pointed out in [1] these resonances seem to organize
themselves in nice curved Regge trajectories, see figure 6.

That we find an infinite sequence of resonances for higher spins is perhaps not surpris-
ing. We know gravity requires them to Reggeize properly. It is amuzing though that spin 0
seems to have a single resonance. Since we are minimizing α which can be extracted from
a simple sum rule [1]

α !6P = 2
π

∫ ∞

0
ds

ImA(s+ iε, t = 0)
s

, (5.1)

we see that minimizing the imaginary part of the amplitude is encouraged. That means
minimizing the number of possible bumps/resonances. It seems like a single one for spin 0
is the minimum.

There is also a sequence of broader zeroes. Calling them resonances or not would
be debatable, much like calling the QCD σ resonance a particle was debatable in pion
particle physics [16]. Here these zeros are really “more imaginary than real” which would
make their particle interpretation even more dubious. It would be fascinating to see how
all these resonances arise (or not) from re-organizing the singularities of weakly coupled
Virasoro-Shapiro as the coupling is increased; more on this below.

5.2 Low spin dominance

Since α is also given by a sum rule (5.1) we can partial wave decompose A in the sum
rule integrand to estimate how much each spin “contributes” to α. We find — perhaps not
surprisingly — that lower spins contribute the most to the result as depicted in figure 7
for our bootstrapped strongly coupled amplitude in d = 10. For comparison, in that same
figure we plotted the contribution to α spin by spin in perturbative string theory where
the same low spin dominance is also neatly observed despite these amplitudes being in
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