The Nonperturbative S-matrix Bootstrap

João Peredones

Based on work with: Correia, Elias-Miro, Guerrieri, Haring, Hebbar, Homvich, Karateev, Kuhn, Marucha, Meineri, Murali Paulos, Sahoo, Toledo, van Rees, Vieira, Vuignier

Quantum Spacetime and the Renormalization Group 2023 5/10/2023

Outline

- Intro duction
- Applications
- $2 \rightarrow 2$ Super graviton Scattering in $d=9,10,11$
['21 Guerrieri, JP, Vieira]
['22 Guerrieri, Murali, JP, Vieira]
- a-anomaly bootstrap in 4d
['22 Kavateev, Marucha, JP, Sahoo]
- Discussion

In troduction

The S-matrix program

Heisenberg
"Nuclear Democracy" '60

The "observable quantities" in the theory of elementary particles

$$
1943
$$

Modern QFT Bootstrap
Goal: map out the space of QFTs and develop non perturbative methods to compute their doservables.

Bootstrap approach: bound the space of theories by imposing consistency conditions on physical observables.

STrategy: extend recent success in CFT to QFT.

Conformal Bootstrap
correlation functions

$$
\sum>=\sum Y
$$

S-matrix Bootstrap

Scattering amplitudes

Applications

Some Applications
2D phonons with Elias-Miró, Guerrieri, Hebbar, Vieira pions with Guerrieri, Vieira
TODAY \rightarrow super-gravitons with Guerrieri, Murali, Vieira photons with Meineri, Haring, Hebbar, Karateev
massive scalars with Homrich, Paulos, Toledo, van Rees, Vieira massive fermions with Hebbar, Karateev
TODAY \rightarrow Hd a-anomaly with Karateev, Marucha, Sahoo ad central charge with Correia, Karateer, Kuhn, Vuignier

Goals: - bound the leading Wilson coefficients of The EFT.
-bound the interaction strength (cubic \& quartic couplings)

- bound a-anomaly of the UV CFT

Maximal Supergravity $d=9,10,11$
$2 \rightarrow 2$ Supergraviton Scatteving

pre-factor
fixed by SUSY
$2 \rightarrow 2$ Supergraviton Scatteving

Focus on charged scalar: [axi-dilaton in IIB]

$$
16 \pi G_{N}=(2 \pi)^{d-3} \ell_{P}^{d-2}
$$

pre-factor
fixed by SUSY

$$
T(s, t, u) \equiv s^{4} A(s, t, u)=-8 \pi G_{N}\left(\frac{s^{2}}{t}+\frac{s^{2}}{u}\right)+\ldots
$$

$$
\frac{T(s, t, u)}{8 \pi G_{N}}=s^{4}\left(\frac{1}{s t u}+\alpha \ell_{P}^{6}+\ldots\right) \equiv s^{4} A(s, t, u)
$$

$2 \rightarrow 2$ Supergraviton Scatteving

Fous on charged scalar: [axi-dilaton in IIB] $16 \pi G_{N}=(2 \pi)^{d-3} \ell_{P}^{d-2}$
 pre-factor fixed by SUSY

$$
T(s, t, u) \equiv s^{4} A(s, t, u)=-8 \pi G_{N}\left(\frac{s^{2}}{t}+\frac{s^{2}}{u}\right)+\ldots
$$

$$
\frac{T(s, t, u)}{8 \pi G_{N}}=s^{4}\left(\frac{1}{s t u}+\alpha \ell_{P}^{6}+\ldots\right) \equiv s^{4} A(s, t, u)
$$

What are the allowed values of α ?

$$
E F T: \quad S=\frac{1}{(2 \pi)^{7} l_{p}^{8}} \int d_{x}^{10} \sqrt{-g}\left[R+\# \alpha l_{p}^{6} R^{4}+\ldots\right]
$$

Superstrings $d=10$
II B
II A
$\alpha^{\mathrm{IIB}}=\frac{1}{2^{6}} E_{\frac{3}{2}}(\tau, \bar{\tau}) \geq \frac{1}{2^{6}} E_{\frac{3}{2}}\left(e^{i \pi / 3}, e^{-i \pi / 3}\right) \approx 0.1389$
$\zeta \tau=\boldsymbol{x}_{\boldsymbol{s}}+\mathbf{i} / \boldsymbol{g}_{\boldsymbol{s}}$

$$
\alpha^{\mathrm{IIA}}=\frac{\zeta(3)}{32 g_{s}^{3 / 2}}+g_{s}^{1 / 2} \frac{\pi^{2}}{96} \geq \frac{\pi^{3 / 2}(\zeta(3))^{1 / 4}}{24 \sqrt{3}} \approx 0.1403
$$

['97 Green, Gutperle]

$$
\alpha^{\mathrm{IIB}}=\alpha^{\mathrm{IIA}}+O\left(e^{-\frac{2 \pi}{g_{s}}}\right)
$$

M-theory $d=11$

$$
\alpha=\frac{(2 \pi)^{2}}{3 \times 2^{7}} \simeq 0.1028
$$

String theory $d=9$

$$
\alpha=\frac{1}{2^{6}}\left[v^{-3 / 7} E_{3 / 2}(\tau, \bar{\tau})+\frac{2 \pi^{2}}{3} v^{4 / 7}\right] \geqslant 0.2417
$$

related to compactification radius

See $[$ '23 Bossard, Lot $]$ for lower bounds in $d=6,7,8$.

Numerical S-matrix Bootstrap

PRIMAL ALGORITHM
['17 Paulos, JP, Toledo, Van Res, Vieira]

1. Write amplitude ansatz obeying: $\left\{\begin{array}{l}\frac{\text { Lorentz invariance (}+ \text { sUSS })}{\text { Crossing symmetry }} \\ \text { Analyticity } \\ \text { Low energy_from EFT }\end{array}\right.$
2. Impose unitarity of each partial wave
3. Minimize a linear observable of the amplitude

PRIMAL ALGORITHM
['17 Pulls, JP, Toledo, Van Res, Vieira]

2. Impose unitarity of each partial wave \rightarrow spin $l \leq L$
3. Minimize a linear observable of the amplitude
4. Extrapolate $L \rightarrow \infty$ and $N \rightarrow \infty$

1. Analytic and crossing symmetric ansatz:

$$
T=8 \pi G_{N} s^{4}[\underbrace{\frac{1}{s t u}}_{\text {SUGRA }}+\underbrace{\left.\left.\sum_{a+b+c \leqslant N}^{\prime} \beta_{(a b c)}^{(\text {free parameters }} \rho^{a} \rho^{a}\right)^{b} \rho(u)^{c}\right]}_{\text {"UV completion" }} \quad \begin{array}{c}
s+t+u=0 \\
{\left[l_{p}=1\right]}
\end{array}
$$

2. Unitarity constraints
['98 Bern etal.]

$\Rightarrow \quad \operatorname{Disc} A \geq s^{4} \int d \operatorname{LIPS} A \times A$

$$
\sum_{\text {two pt }} \mathbf{R}_{12 \rightarrow \text { two pt }}^{4} \mathbf{R}_{\text {two pt } \rightarrow 34}^{4}=\mathbf{R}_{12 \rightarrow 34}^{4} \times s^{4}
$$

Unitavity of $\quad \mathbb{A}_{2 \rightarrow 2}=\mathbf{R}^{4} A(s, t, u) . \quad \Leftrightarrow$ Unitavity of $T=s^{4} A(s, t, u)$

$$
\text { Disc } T \geqslant \int d L I P s ~ T \times T
$$

2. Unitarity constraints
['98 Bern etal.]

$\Rightarrow \quad \operatorname{Disc} A \geq s^{4} \int d \operatorname{LIPS} A \times A$

$$
\sum_{t \mathrm{wo} ~ p t} \mathbf{R}_{12 \rightarrow t \mathrm{two} \mathrm{pt}}^{4} \mathbf{R}_{\mathrm{two}}^{4} \mathrm{pt} \rightarrow 34=\mathbf{R}_{12 \rightarrow 34}^{4} \times s^{4}
$$

Unitavity of $\quad \mathbb{A}_{2 \rightarrow 2}=\mathbf{R}^{4} A(s, t, u) . \quad \Leftrightarrow$ Unitavily of $T=s^{4} A(s, t, u)$

$$
\Rightarrow \quad\left|S_{l}(s)\right|^{2} \leqslant 1 \quad \text { for }\left\{\begin{array}{l}
l=0,2,4, \ldots, L \\
s>0[\text { grid }]
\end{array}\right.
$$

$$
S_{l}(s)=1+i N_{d} s^{\frac{d}{2}-2} \int_{-1}^{1} d z\left(1-z^{2}\right)^{\frac{d-4}{2}} C_{l}^{\frac{d-3}{2}(z)} T(s, z) \underbrace{\substack{t=-5 /(1-z) \\
u=-\frac{5}{2}(1+z)}} \begin{gathered}
\cos \theta_{\pi} \text { scattening } \\
\text { angle }
\end{gathered}
$$

3. Minimize α for each N and L.
\rightarrow Semi-definite Programming SDPB
['15 Simmons-Duffin]

Positivity in the $S_{k y}$

$$
\left(I_{m} T\right)_{i j} \equiv I_{m} T\left(s, t=-\frac{s}{2}\left(1-\cos \theta_{i j}\right), u=-\frac{s}{2}\left(1+\cos \theta_{i j}\right)\right) \geqslant 0
$$

This is not an independent condition but it accelerates Convergence in spin $(L \rightarrow \infty)$.

4. Extrapolate $L \rightarrow \infty$ and $N \rightarrow \infty$

Minimal values of α

Dimension	Bootstrap	String/M-Theory
9	0.223 ± 0.002	0.241752
10	0.124 ± 0.003	0.138949
11	0.101 ± 0.005	0.102808

Figure 6. The first two Regge trajectories in 10 d for $\mathrm{N}=30$ and $\mathrm{L}=200$. The error bars represent the widths and the resonances lie on curved trajectories that scale approximately like $\ell^{1.3}$. More details in appendix F.

Bootstrapping the 2 -anomaly in $4 d$

$$
d=4
$$

$$
a_{U V}>a_{I R} \quad[188 \text { cardy }]
$$

['II Romargodski; Schwimmat]

S-matrix Boot strap setup
Mass Spectrum

trivial CFT (aped)

$$
T_{\varphi \varphi \rightarrow \varphi \varphi}=\frac{1}{f^{4}} a^{\omega v}\left(s^{2}+t^{2}+u^{2}\right)+O\left(s^{3}\right)
$$

['II Romargadski, SchWimmal]

Results

Figure 5. Minimum possible value of the a-anomaly without any further assumptions as a function of $1 / N_{\max }$ with $L_{\max }=N_{\max }+10$. The numerical results are depicted by blue points. Linear extrapolation to $N_{\max } \rightarrow \infty$ depicted by the red line gives 0.316 ± 0.015 for the minimum of $a / a_{\text {free }}$.

$$
\frac{\partial}{\partial_{F B}} \geqslant 0.32
$$

See $\left[\begin{array}{l}\text { '23 Marucha }]\end{array}\right.$ for bounds without \mathbb{Z}_{2} symmetry.

Discussion

- Dual formulation would be very useful.

[77'Lopez, Mennessier] [...]
['I9 Cordovn, He, Kruczenski, Vieiva]]
$\left.\begin{array}{l}\text { ['20 Guerrieri, Homrich, Vieira] } \\ {[' 21 \text { Guerrieri, Elias Miró'] }}\end{array}\right\} D=2$
$\left.\begin{array}{ll}{\left[\begin{array}{ll}121 & \text { He, Kruczenski } \\ {[21} & \text { Guerrieri, Sever }]\end{array}\right.}\end{array}\right\} D>2$

Unitarity: $2 I_{m} f_{l}(s) \geqslant\left|f_{l}(s)\right|^{2} \Leftrightarrow\left|S_{l}(s)\right|^{2} \leqslant 1$ $1+i f_{l}^{\prime \prime}(s)$
vs.
Positivity: $\quad \operatorname{Im} f_{l}(s) \geqslant 0$
\rightarrow Unitarily is stronger than positivity.

Example: supergraviton scattering $(d=10)$

$$
\left\{\begin{array}{l}
\text { Unitarily } \Rightarrow \alpha \geq 0.14 \\
\text { positivity } \Rightarrow \alpha \geq 0
\end{array}\right.
$$

Future work in graviton scattering

- Other spacetime dimensions
$5 \leq d \leq 8$ Need to take into account log's from loops $d=4 \quad I R$ divergences
- Inelastic effects from $2 \rightarrow 3$ and/or Black Hole production
- Other wilson coefficients
- No SUSY.
['21 Bern, Kosmopoubs, Zhiboedov]
['22 Caron-thot, Li, Parra-Martinez, Simmons-Duffin $]$

Big open questions

- Prove (or drop) Maximal Analyticity $\left[\begin{array}{l}\text { - in perturbation theory? ['21 correia, Sever, Zhiboedar] } \\ \text { from the flat space limit of QFT in AdS? ['23 van Reed, Zhao] }\end{array}\right.$
- Anomalous thresholds
- Multi-particle amplitudes $(n \rightarrow m)$

Thank You!

