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Is metric field fundamental?
• We start with an assumption that the metric 
field gμν (spin 2 symmetric tensor) is 
fundamental degrees of freedom in gravity.  
(Physically 2 d.o.f.). 

• In low energy, the metric field gμν well-
describes gravitational interactions. 

• Indeed, gravitational waves are discovered. 

• But, is it true even in high energy?



Is metric field fundamental?
• Standard procedure in computations: 

• expansion of metric 

• obtain inverse metric from 

• This series gives an infinite number of vertices. 

• It is natural for metric theories to be perturbatively 
non-renormalizable. 

• This may indicate new degrees of freedom.
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Pion
• lightest particle in QCD (1936) 

• Before 1960, QCD was not known. 

• Quark model was proposed in 1960. 

• Low energy theorems was known. 

• e.g. Goldberger-Treiman relation (1958) 

• Pion dynamics is well-described by O(N) non-linear 
sigma model in low energy.



Non-linear sigma model
• O(N) non-linear sigma model: N-1 d.o.f. 

• Perturbatively non-renormalizable. 

• Breaks unitarity for  

• Existence of massive sigma meson (~f0(500)) 

• O(N) linear sigma model: N d.o.f. 

• Perturbatively renormalizable and unitary



Where does the 
nonlinearity come from?

• Spontaneous symmetry braking O(N)→O(N-1) 

• Vacuum condition gives a constraint:



Phase diagram in 3 dim linear σ model

Wilson-Fisher (IR) FP 
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Gaussian (UV) FP 
(perturbative)
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Phase diagram in 3 dim linear σ model
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Phase diagram in 3 dim linear σ model

Wilson-Fisher (IR) FP 

(non-perturbative)

Non-trivial UV FP 

(non-perturbative)

Arrows: From UV to IR

non-linear σ model

linear σ model

Same universality class

Broken phase



“Duality” at fixed point
Asymptotically safe theory

3 dim non-linear σ model 3 dim linear σ model

3 dim Gross-Neveu model 3 dim Higgs-Yukawa model

Asymptotically free theory
established

Asymptotically safe gravity ?



What can we learn?
• In low energy, we can observe only light d.o.f. 

• New d.o.f. associated to bigger symmetry group may 
define a theory to be renormalizable and unitary. 

• Symmetry spontaneously breaks into its subgroup. 

• Some d.o.f. become massive.  

• Massless (light) modes become effective d.o.f. in 
low energy.



Bigger symmetry broken 
into smaller symmetry 

• Non-linear sigma model 

• Gravity

? SSB

Diffeomorphism

O(N)
SSB

O(N-1)
 is fluctuation around .

 is fluctuation around .

(Einstein phase)



Earlier Attempts

• GL(4) 

• SO(1,3)local × diff.

? SSB
Diffeomorphism
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First-order formalism
• Based on SO(1,3) local Lorentz symmetry (and diff.) 

• Vierbein 

• Local-Lorentz (LL) gauge field 

• Vierbein is in fundamental rep. of SO(1,3) 

• Action under SO(1,3)×diff.
cf.



Degenerate limit 
and 

Irreversible vierbein postulate
• How to define “symmetric phase”? 

• Degenerate limit: Some eigenvalues of vierbein take zero; . 

• Irreversible vierbein postulate 

• The tree level action for gravity does not contain divergent 
terms for .

In this limit, volume element becomes zero.



Example
• Scalar kinetic term

This term diverges 
for 
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SO(1,3)×diff. model  
in degenerate limit

• Including matters, at a certain scale , 

•   can contains  and  . 

• Only fermions are dynamical! 

• No kinetic terms of vierbein, gauge and scalar fields. 

• These fields would be dynamical via fermion quantum corrections.



Spontaneous local Lorentz 
symmetry breaking

• Generation of expectation value of vierbein 

• A possible solution would be a flat spacetime. 

• Effective potential from spinor loop effects:

tree level spinor loop effect
Degenerate limit



Spontaneous local Lorentz 
symmetry breaking

• Local Lorentz gauge symmetry is broken. 

• Degrees of freedom (d.o.f.): 

• Vierbein　　  : 16 d.o.f. = 10 + 6 d.o.f. 

• LL gauge field            :  4 d.o.f × 6 d.o.f : massive vector 

• LL gauge bosons become massive and decouple. 

• The symmetry parts (radial modes) are still massless 
thanks to diff.

Symmetric part (metric) 
(radial modes)

Anti-symmetric part   
(NG modes)

eaten
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Gravitational d.o.f. are 
composite fields of matter? 
• Composite of fermions: “Spinor gravity” 

• Composite of scalar fields
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TT-deformed O(N) scalar theory 
in d=2

• Action 

• Introducing auxiliary field (kind of bosonization)

: energy-momentum tensor
 :deformation parameter

A. B. Zamolodchikov arXiv:hep-th/0401146



Attractive features of 
TT-deformed O(N) scalar theory in d=2

• Relate to the Nambu-Goto string action in a 
N+2 dimensional target space 

• Scalar theory coupled to gravity



Naive perturbative picture 
• α is irrelevant.

string

free scalar theory



FRG analysis
• Effective action 

• Non-trivial fixed point exists
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FRG analysis
• Effective action 

• Critical exponents



Non-perturbative picture 
• α is relevant.

string

QFT



Summary
• Metric d.o.f. may be not enough to describe 
quantum gravity in high energy. 

• Bigger symmetry including diff. may exist. 

• Spontaneous symmetry breaking gives massive 
modes and massless modes. 

• Duality at fixed points becomes a hit for such a 
high energy theory of asymptotically safe gravity.



Appendix



Formula



Lesson 2:  
Fermi’s weak theory

• Fermi’s weak theory (1930) 

• Perturbatively non-renormalizable. 

• Breaks unitarity for  

• Discovery of W boson and Higgs boson 

• Standard model SU(2)×U(1) 

• Perturbatively renormalizable and unitary



First-order formalism

• Equation of motion 

• Obtain the EH action in the vierbein formalism 

• Introducing inverse vierbein breaks SO(1,3)local symmetry. 

• Kinetic term of LL gauge field



Degenerate limit
• Non-linear σ model: O(N-1) invariant 

• Constraint on fields 

•           : symmetric phase (O(N) invariant) 

• Gravity in first-order formalism 

• Constrain on metric 

•  : symmetric phase (SO(1,3) invariant).



GL(4)
• GL(4) gauge field 

• GL(4) → diff. by the condition

Christoffel symbols Torsion

24 conditions in 4 dimensions 

in 4 dimensions24 d.o.f.40 d.o.f.


