
Tutorial Sessions:

ASQG meets computer tensor algebra

DAY 1: General coding advice and conceptual introduction

Gustavo P. de Brito and Benjamin Knorr

Before you start coding

• know and understand 100% what you want to compute – not 90%, not 99%, there is no room for

insecurity, coding is rigorous, and you will get nonsense if you don’t know what you are doing

• start easy, build up slowly – there is no point in wanting to start out with creating the most

general code

• check the documentation of Mathematica – if you feel that there should be a function which

does what you want to do, there probably is, don’t reinvent the wheel

• test every single function of your code, test more than just trivial examples (edge cases are

important), reproduce known results before computing new ones

• perform sanity checks – should this take this long/short? is the result reasonable? have an

expectation of what should come out!

• assume your code to be wrong until thoroughly tested – the questions is not whether there are

bugs, but how many

• ask experienced colleagues for help if you are running against a wall, check out notebooks that

have been published along articles, use stackexchange/forums/. . .

• document your code! you maybe remember now what you did, but in 2 months? 5 years?

• optimisation: as much as needed, but don’t overdo it, diminishing returns; usually tradeoff

between performance and generality

Conceptual introduction into the flow equation

Goal of today: making sense out of the flow equation

Γ̇ =
1

2
Tr

[(
Γ(2) +R

)−1
Ṙ

]
. (1)

Things that we will discuss today:

• approximation schemes and simplifications = choosing an ansatz for Γ

• metric perturbations = computing Γ(2)

• gauge-fixing and regulator = making the inversion well-defined
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• inversion = performing the inversion

• heat kernel = performing the trace

Biased selection of useful references:

• recent book chapters on Asymptotic Safety [1–8]

• books [9, 10]

• recent FRG review [11]

• heat kernel [12–14]

• advanced technical topics [15–17]

Approximation schemes

• cannot solve (1) exactly, so we have to make approximations

• background field method: split metric into arbitrary background plus fluctuations, gauge fixing

and regularisation break diffeomorphism symmetry

• first choice that you have to make: background field approximation or fluctuation computation;

here only the former

• within this approximation, have to make further approximations:

– derivative expansion:

Γ =
1

16πGN

∫
√
g
[
−2Λ +R+ aR2 + bRµνRµν + cE+O(∂6)

]
. (2)

– curvature expansion:

Γ =
1

16πGN

∫
√
g
[
−2Λ +R+RfRR(∆)R+RµνfRicRic(∆)Rµν + cE+O(R3)

]
. (3)

– choice of useful background:

Γ =

∫
√
g [f(R) +O(DR,S,C)] . (4)

• finding a basis is non-trivial and dimension-dependent [18]

• approximation scheme dictates which simplifications you can use

– derivative expansion up to O(∂2): Cµνρσ ≃ 0, Sµν ≃ 0, DµR ≃ 0

– derivative expansion up to O(∂4): DαRµνρσ ≃ 0, RCµνρσ ≃ 0, . . . [17]
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Metric perturbations

• need to compute Hessian Γ(2)

• here: linear parameterisation

gµν = ḡµν + hµν (5)

• have to compute Γ[ḡ + h] up to quadratic order in h (higher order if fluctuation computation)

• metric determinant:

√
det gµν =

√
det [ḡµν + hµν ]

=
√
det [ḡµρ (δ

ρ
ν + hρν)]

=
√
det ḡ

√
det (1+ h)

=
√
det ḡ

√
exp tr ln (1+ h)

=
√
det ḡ exp

−1

2

∑
n≥1

1

n
tr [(−h)n]

 (6)

• metric inverse:

g−1 = (ḡ + h)−1

= (ḡ [1+ h])−1

= [1+ h]−1 ḡ−1

=
∑
n≥0

(−h)n ḡ−1

⇒ gµν = ḡµν − hµν + hµαh
αν + . . . (7)

• Christoffel symbol:

Γα
µν = Γ̄α

µν +
1

2
gαβ

[
D̄µhβν + D̄νhβµ − D̄βhµν

]
(8)

• from these, one can compute curvature tensors and their covariant derivatives

• to compute Hessian:

– insert expansions of geometric quantities up to order of interest

– expand everything out

– perform partial integrations and sort covariant derivatives to bring the quadratic part into

the form

Γ[ḡ + h]|h2 =
1

2

∫ √
ḡ hµνΓ

(2)µνρσhρσ (9)

3



Gauge-fixing and regulator

• to make inverse well-defined, have to add gauge-fixing and regularisation

• standard gauge-fixing condition:

Fα ≡ F µν
α hµν =

1√
16πGN α

(
δ (µ
α D̄ν) − 1 + β

d
ḡµνD̄α

)
hµν (10)

α, β: gauge-fixing parameters

• implementation via extra contribution to Γ:

Γgf =
1

2

∫ √
ḡFαḡ

αβFβ (11)

quadratic in the fluctuation h – breaks full diffeomorphism symmetry (as it must)

• the gauge-fixing procedure also requires Fadeev-Popov ghost - action is related to gauge-fixing

operator acting on a diffeomorphism

Γgh =

∫ √
ḡ c̄µ F αβ

µ D(αcβ) , (12)

• choosing a well-behaved regulator is extremely difficult in a general gauge

• two straightforward strategies:

– choose harmonic gauge – only Laplacians in the Hessian, relatively straightforward to reg-

ularise: ∆̄ 7→ ∆̄ +R(∆̄)

– use TT decomposition:

hµν = hTT
µν + D̄µξ

T
ν + D̄νξ

T
µ + 2D̄µD̄νσ − 2

d
ḡµνD̄

2σ +
1

d
ḡµνh

Tr (13)

with

ḡµνhTT
µν = 0 , D̄µhTT

µν = 0 , D̄µξTµ = 0 (14)

removes problematic terms with open derivatives in the Hessian, but has its problems; field

redefinitions improve the situation but still not perfect

Inversion

• regularised and gauge-fixed Hessian done, need to invert

• strategy: the ”P-F formula” – split Hessian into part that you know how to invert (P) plus the

rest (F):

H = P + F ⇒ H−1 = (P + F)−1 =
∑
n≥0

(
−P−1F

)n P−1 (15)

• key point: choose P and F in a clever way so that you only need finitely many terms in the sum

• sometimes difficult to compute P−1

• alternatively, relatively generic starting point: flat spacetime propagator
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– compute flat propagator in momentum space

G(0)(p) = GTL(p2)ΠTL +GTr(p2)ΠTr + . . . (16)

– choose convenient ordering of flat propagator and promote to curved spacetime, replacing

momenta by covariant derivatives

– compute

G(0)H = 1+ Y (17)

Y is automatically at least linear in curvature, and can be computed

– compute

H−1 = (1+ Y)−1G(0) (18)

using geometric series (truncates at finite order!)

• finally, to compute trace, all functions of Laplacian should be sorted to the right

• need commutators of general functions of Laplacian with covariant derivatives and curvatures –

use inverse Laplace transform and Baker-Campbell-Hausdorff:

f(∆) =

∫ ∞

0
ds f̃(s) e−s∆ (19)

commutator with either derivative or curvature:

[f(∆), X] =

∫ ∞

0
ds f̃(s)

[
e−s∆, X

]
=

∫ ∞

0
ds f̃(s)

∑
n≥1

(−s)n

n!
[∆, X]n e

−s∆ (20)

=
∑
n≥1

1

n!
[∆, X]n f

(n)(∆) (21)

with the multicommutator

[X,Y ]n =
[
X, [X,Y ]n−1

]
, [X,Y ]0 = Y , [X,Y ]1 = [X,Y ] = XY − Y X (22)

Heat kernel

• flow now in the form

Γ̇ =
1

2
Tr

∑
i

Qµ1...µn

i Dµ1 · · ·Dµnfi(∆) (23)

with Qi multiplication operators – they do not contain covariant derivatives acting to the right

• functional trace = integral over continuous and sum over discrete indices

• flat spacetime: loop momentum integral

• if you know the spectrum of the Laplacian on your background: spectral integral

• generally: heat kernel
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• usage:

TrQf(∆) =

∫ ∞

0
ds f̃(s) TrQe−s∆

=

∫ ∞

0
ds f̃(s)

1

(4πs)d/2

∑
n≥0

sn
∫

ddx
√
g trQAn (24)

and similar for terms with extra derivatives; Tr = functional trace, tr = index trace

• An known up to sufficiently high order, e.g.:

A0 = 1 , A1 =
1

6
R1 (25)

• have to undo inverse Laplace transform:∫ ∞

0
ds f̃(s) s−n =

1

Γ(n)

∫ ∞

0
dz zn−1f(z) , n ≥ 1 (26)∫ ∞

0
ds f̃(s) sn = (−1)nf (n)(0) , n ≥ 0 (27)
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