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Machine Learning
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Typical GW analysis workflow

2 SEARCHES A

Templ_ate Make Triggers
Matching (with False Alarm Rates,
Signal to Noise Ratio)
Whitening Identified Signals
[ =|— J
~\

PARAMETER
ESTIMATION
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\/ -Pl_
Interferometers Detector
] ] Chararacterization Event
Calibration \ & Validation
Data Quality

Bayesian
Analysis
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Environmental O
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Instrument Performance

B P Abbott et al 2020 Class. Quantum Grav. 37 055002
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Gravitational waves detection problem

Inspiral Merger Ring-
down

S s s0e0

|

Signal in the data

Normalized amplitude

- — Numerical relativity
I Reconstructed (template)
|

Rare and weak signals in complex
background: non-Gaussian non-
stationary
Rate of expected detections increase

| with the sensitivity improvement of the
0.35 0.40 detectors
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Non-Gaussian data

Inh.l N[} ..||h|ll )

T

4 6 8 10 12 14 16
Time [seconds] from 2015-12-16 09:41:56 UTC (1134294133.0)

histogram of the same data
The data are far from being Gaussian and stationary:

"
/

F/ Y

e Standard match-filter approach assume Gaussian
data
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Typical noise of GW detectors

E [.LIGO Hanford

Median sensitivity during O
(shaded regions indicate the 5th and 95th percentile)
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ML in GW data analyses

@ ML applied in all sorts of data analyses
@ Impossible to summarise everything!

@ On line page to collect papers about this subject: https://
iphysresearch.qgithub.io/Survey4dGWML/

v Not official repository but good representation
v About 350 papers (great part of the last 5 years)

@ ML in GW data analysis also topic of EU COST actions (e. g.
https://www.g2net.eu/)

@ Kaggle competitions

v https.//www.kaggle.com/c/g2net-gravitational-wave-detection/

v https://www.kaggle.com/competitions/g2net-detecting-
continuous-gravitational-waves

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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Papers per year

Papers on ML+GW per year (total 350)
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Data representation

@ Data representation

N
o

v - Spectrogram vs Time series

—h
(&)}

v Choice to make for Machine
learning application
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Glitch classification

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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Gravity Spy

Goal: classify glitches by combining human and machine-learning

classification schemes

/

https://www.zooniverse.org/projects/zooniverse/gravity-spy

Gravity Spy uses Convolutional
Neural network N, a deep-learning
algorithm used primarily for image
classification, to analyse data as
time-frequency maps

e ——

Input image

Filter

Output array

Output [0][0] = (9*0) + (4*2) + (1*4)
+ (1D + (1*0) + (1*1) + (2* 0) + (1*1)
=04+84+14+4+1+0+1+0+1

=16
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Glitches zoo
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See also zenodo: https://zenodo.org/records/5649212
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https://www.sciencedirect.com/science/article/pii/S0020025518301634
https://zenodo.org/records/5649212

Explainable artificial intelligence

* Reference: N. Koyama et al. 2024 Mach. Learn.: Sci. Technol. 5 035028
»  Convolutional neural network model to classify glitches using spectrogram images from the

Gravity Spy O1 dataset.
» (Class activation mapping for visualising influential regions in input images that contribute to

specific predictions.

Figure 3. Estimation rationale of a correctly classified 'Chirp' sample. The figure comprises an input image (left); an

estimation rationale heatmap (centre) is obtained from Score-CAM using the input image and backpropagated to the

Figure 7. Left: Heatmap of the overlap image (input image and the estimation
rationale) when “Whistle” is misclassified as “Blip”. Right: Heatmap of the overlap
image (input image and the estimation rationale) when “Whistle” is correctly classified
as “Whistle”.

'Chirp' Softmax output; the overlapping picture (right) highlights the coincident region between the input and the

heatmap.

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024 13


https://iopscience.iop.org/article/10.1088/2632-2153/ad6391

Data denoising

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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Denoising autoencoder based on CNN

@ Denoising: model that take noisy signals and return clean signals

Clean Corrupted
input input

Output=

reconstructed
clean input

Latent
space

Decoder

fo

N Econder and decoder are CNNs

Lpae(0,¢) = Z (i — fev(gcp‘(f?i)))2

i=1 Reference: P. Bacon et al. MLST 4 (2023) 035024
A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024



https://iopscience.iop.org/article/10.1088/2632-2153/acd90f

Denoising real events

Noisy =  Template m  Denoised Aleatoric uncert. GW1 5091 4 - DenOiSing WOrkS quite We”

> A for events with SNR>8 and
0 B UL 1] R Aﬁv,lL\v,\v/\v/\vr\V/\V \}vl\vnv.v*,#&_# masses In the range used
for training
-5 - L/
5 * Training only on L1 data
E A AM but works also on H1
& wﬂawx—%mm*—"ajkﬂ“*w R T e _,A [\ / Al,xv‘_-;#_, .
§ O TN TR EE PN 1 L 1 1 L VVV" e Works also for O2 events
A s (not tested for O3)

~0.25 ~0.20 ~0.15 ~0.10 ~0.05 0.00 0.05
Time [seconds] from GPS 1126259462 .4

Reference: P. Bacon et al. MLST 4 (2023) 035024
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Binary Black Hole signal detection

ovato, Unlocking Gravity Through Computation, 10th Dec 2024



First example

@ Reference: A Trovato et al 2024 Class. Quantum Grav. 41 125003

v. Classification of segments of data
v TiIme-series representation

v Training on real data

v Focus on single detector periods

z. @Glitch impact on sensitivity is larger during single-detector periods as

coincidence with additional detector is impossible. Can machine learning
help?

> Single-detector time (~ 30% of the time when only the two LIGO take data
or ~3% when also Virgo takes data): ~2.7 months in O1+02; ~1.6 months
in O3: ~ 2.4 months in O4a

v Analysis of L1 single detector periods in O

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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https://iopscience.iop.org/article/10.1088/1361-6382/ad40f0

Training data: 3 classes

Segments of glitches and “almost Gaussian” noise data samples from the one month of LIGO O1 run
(downsampled to 2048 Hz), whitened by the amplitude spectral density of the noise.

Noise from GPS 1132550972.487

2.5 1

Real detector noise from real data
when nor glitches nor signals nor
iInjections are present

0.0 -

-2.5 -

-5.0 -

0.0 0.2 0.4 0.6 0.8 1.0

Added signal with SNR=20
5.0 m = signal+noise

. ® signal
Real detector noise (selected as 25- :
noise class) + BBH injections 00-

2.5 -

-5.0 -

0.0 0.2 0.4 0.6 0.8 1.0

20 -

Data containing glitches
(glitches inferred from 2+ detector
periods with gravity spy and cWB)

10 -

0 -

-10 -

_20 -

0.0
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Input time series data

v

; Neural network
@ CNN : Convolutional Neural Network '

Summary of this paper

@ 3 NN architectures:

@ TCN : Temporal Convolutional Network | Probability for each of the three |

. . classes
@ IT : Inception Time

@ Focus on the stricter cut possible: Ps=1 at machine precision (single-
precision floating-point format)

@ Applied the 3 networks to the remaining 3 months of L1 in O1 excluding the 1
month period already used for training and testing and know injections

@ Found one event common to the three analyses: L1-only at
GPS=1135945474.0 (2016-01-04 12:24:17 UTC)

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024 20



Bilby reconstruction

Data

90% credible interval

4 | === Bjlby mean reconstructed == = Denoised data

Whitened Strain

0.20 25 0.30

0.35

0.40

0.45

Time [seconds| from 2016-01-04 12:24:17 UTC (1135945474 .0

3 Parameters conS|stent W|th BBH populatlon observed SO far

— 1.8 _ 12.3
SNR = 11.34%18 a0 = 30.18+1%
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Other example: Kaggle competition

@ Lots of literature on ML for BBH signal detection but results hard to

COmpare 0 Dataset 1 Dataset 2
3000 —— A: MFCNN —— D: TPI FSU Jena
2500 B: PyCBC - E: Virgo-AUTh
| —— C: CNN-Coinc === F:cWB
= Reference: M. B. 2000

Schéfer et al. Phys. 1500 |

Rev. D 107 (2023) 1000

02 3 02 1 500 b

O
Q.
=,
L
O
c
4]
%
O

°00 Dataset 3 Dataset 4

. 3
v Multi-detector search .

ensitive

S
DO
o

2000
1500
1000

000

10° 2 100 10°
False alarms [1/month]
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.023021
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.023021
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.023021
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.023021

AresGW improvements

e Reference: A. E. Koloniari et al.
 ResNet-based deep learning code

» hierarchical classification of triggers, based on different noise and frequency filters
» logarithmic ranking statistic R, = — logo(1 — R + 10716
e eight'new GW candidates in the O3 data, with pastro > 0.5

TABLE VI: New candidate events identified by AresGW.

(s) (1/yr) (s)

GW190511-135545
GW190614.144749
GW190607_093827
GW190904_114631
GW190523_095933
GW200208-211609
GW190705.174632
GW190426_092124

1
2
3
4
D
6
7
8

1241614563.77
1244555287.93
1243931925.99
1251629209.01
1242637191.44
1265231787.68
1246330410.88
1240302101.93

Selective Passband

Selective Passband
Selective Noise Rejection

Selective Passband
1.39|Selective Noise Rejection

Selective Passband

Default Low-Pass*

Selective Passband

* This event also classified as Selective Noise Rejection, but it has the best pastro as Default Low-Pass.

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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Parameter Estimation

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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“Standard” PE

Bayes theorem | f * Task of inference is to characterize the
|| posterior by drawing samples from it |
p(y|x) p(x) ; | using stochastic algorithms like Markov |
px|y)=—— || chain Monte Carlo (MCMC) methods |
/’ X p(y) || * These algorithms are computationally
Parameters Data || expensive as they require many

likelihood evaluations for each

iIndependent posterior sample, and

each likelihood requires a waveform

||  simulation.

|| = Total inference time of hours to months,

Il  depending on the signal duration and
waveform model

e p(y|x) = likelihood model for strain data ||
|y conditioned on system parameters x |
|« p(x) = prior distribution

|» ply) = evidence

- p(x|y) = posterior distribution

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024 25



DINGO: Deep inference for gravitational-wave observations

M. Dax et al. PRL 127 (2021) 241103

@ Basic idea: produce a large number of

simulated datasets (with associated noise PSD time shifts
parameters) and use these to train a type Sn d
of neural network known as a

“normalizing flow” to approximate the

posterior
network

@ Likelihood used to simulate the data
(while for conventional methods, its

density is evaluated)
Z

@ Normalizing Flow: A technique to build
up representations of complex probability

128 dims

The flow itself depends on a (compressed)

distributions by learning the necessary representation of the noise properties S, and
transformations from a simpler base the data d, as well as an estimate 1 of the
distribution (e.g. a Gaussian) coalescence time in each detector |

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024 26


https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.127.241103

DINGO results

GW151012

GW170729

GW170814

FIG. 3. Comparison of (a) detector-frame component mass
and (b) sky position posteriors from DINGO (colored) and
LALINFERENCE (gray) for eight GWTC-1 events. 90% credible

regions shown.

M. Dax et al. PRL 127 (2021) 241103
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https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.127.241103

https://dcc.ligo.org/LIGO-G2002127/public

What we can expect in the future

K. A. Kuns, Phys. Rev. D 102, 043001 (2020)

Updated == O1
2024-07-11

02 == O3 == O4 05

80 100 100-140 150 -160+ 240-325
Mpc  Mpc Mpc Mpc Mpc

LIGO | I 153

40-50 50-80
Mpc Mpc Mpc

Virgo I =

0.7 1-3
Mpc Mpc

KAGRA | g

G2002127-v26 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

@ (Great improvements in sensitivity
@ New challenges in data analysis!

v huge event rates (superposition of events)

== T1anGO

= aT1anGO

—— ISA

== = DECIGO
aLIGO

= Voyager

= (Cosmic Explorer 2

=== Einstein Telescope (D) D T
TianQin

== GW150914

107>
10 103 102 10! 10° 10!

Frequency [Hz]

v longer in-band duration of CBC signals due to the lower minimum frequency

v .ML will become more prominent
A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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https://doi.org/10.1103/PhysRevD.102.043001

Conclusion

@ Lots of interest to use machine learning for GW data analysis

@ Many ML models get stacked at the development stage

v Excitement phase when you start developing but challenges in deploying,
versioning, manage GPU libraries, etc.

v This happens also outside academy, see e.g. this link

@ Hard to join forces and progress on previous experience

v Attempt to build general use frameworks exists: https://github.com/ML4GW

@ Initiatives like the cost action https://www.g2net.eu/ rare

@ |n the future we will rely more on ML for GW data analysis!

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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https://cdn2.hubspot.net/hubfs/2631050/0284%20CDAO%20FS/Algorithmia_2020_State_of_Enterprise_ML.pdf?__hstc=107579741.e9e15da2a5bf74ac0533e47c9c64fdc7.1733501941903.1733501941903.1733501941903.1&__hssc=107579741.1.1733501941903&__hsfp=843655212&hsCtaTracking=6917adc5-0306-46cd-b19c-ea65761621c2%7C2b8d16be-112b-4c3b-bd77-61899ad314d4
https://github.com/ML4GW
https://www.g2net.eu/
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2020 state of enterprise machine learning

v see this link

Survey at a glance

The main takeaway from the 2020 State of Enterprise Machine Learning survey is that a growing number
of companies are entering the early stages of ML development, but challenges in deployment, scaling,

versioning, and other sophistication efforts still hinder teams from extracting value from their ML investments.

As a result, we will likely see a boom in the number of ML companies providing services to overcome these

obstacles in the near term.

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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Input layer Hidden layers Output layer Filter / Kernel

o

\ ﬁ‘\ Output 1
X

fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelLU activation
Convolution Convolution ol

-
(5 x 5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with

valid padding (2x2) valid padding (2x2)

KA\ Ar*\f*\

INPUT ” nl channels nl channels n2 channels n2 channels || «

(28 x 28 x 1) (24 x 24 x n1) (12x12 xnl) (8 x8 xn2) (4 x4 xn2)

Filter / Kernel

dropout)

OUTPUT

n3 units




Probability to be classified as signal

Probability to be classified as signal can be used as test statistic

n
)
-
=
O
O
e
Q
N
©
-
—
O
Z

0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50
Probability to be classified as signal, Ps

* Noise and glitch classes looks similar in all cases because in general the networks are not able
to distinguish between glitch and noise (so they behave as only one class actually)

* We decided to focus on the signal identification and sum up noise + glitch

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024
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ROC curves

.0 -

\T\\\

0.9-
0.8 -
0.7 -

0.6 -

—— CNN he T

TCN — | T with softmax

o4+
10> 104 103 1072 107! 10V 10-® 10> 10zA _10=3 102 10! 10

False alarm rate [s7'] False alarm rate [s71])

————S

\
\

\‘\\\
>
U \n
C |
9
O |
y— |
Y—
Q
C
o,
S
(O
O
E ]
7 |
)

==
=
N

i sig%al‘ Sampeswith P, ’bove Oé threshold

|

Tot signal samples ‘ # noise +ugli(tc samples with }’S above some threshold |

Tot duration|s] noise + glitch samples

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024



=
-

O
©

O
o

O
o

- CNN
TCN

O
U

>
O
(-
@
O
=
(VI
Q
-
o 0.7
=
©
@
Y—
Vp)
V)]
©
@,

0.4

False alarm rate [s71]

los To- 1o+ 109 107 107

100

0.9-

0.8 -

0.7 -

0.6 -

0.5 -

ROC curves

| T
— | T with softmax

0.4 +——
10°°

65 164 10 102 101

False alarm rate [s71]

 Shaded area between the highest and the lowest ROC curves obtained for each model in the 10 repetitions of

train and test

* “IT with softmax” refers to IT model with softmax activation function applied at the last fully connection layer

during training.
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Classification efficiency vs SNR for fixed FAR

Threshold FAR=10"" s~ 1

=
o

O
©

O
oo

Only the best
model out of the
10 repetitions
considered for
each architecture

©
~

O
U

>
@)
-
i
L
G
)
-
o 0.6
2
©
O
Y=
n
Vp)
©
@,

o
N

e TCN and IT perform similarly and outperform CNN
o Efficiency better than 0.5 for SNR>9 at this level of FAR
(1 alarm per 10° s = 0.864 alarms per day)
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Trigger selection cut

@ We focus on the stricter cut that we can consider: Ps=1 at machine
precision (single-precision floating-point format)

@ With this cut we have:

CNN TCN IT
Noise+glitch samples with Ps=1 0 1 2
Equivalent FAR [s1] <1.7x106 1.7 x106/3.4 x 106
Equivalent FAR in days < 1/(7 days) |1/(7 days) 1/(3 days)
Signal classification efficiency 65% 716% 6%

@ The FAR level reached is compatible with our initial goal: 2 false alarms
per day => FAR =2.3 X 10> s-1

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024



Single-detector time

@ Glitch impact on sensitivity is larger during single-detector periods as coincidence

with additional detector is impossible. Can machine learning help?
@ Single-detector time:

v ~2. 7 months in O1+02; ~1.6 months in O3: ~ 2.4 months in O4a

O3
04/2019 -> 03/2020 (~1 year)

H1-L1-V1: 47.4 %
H1l-L1l: 14.8 %
H1-V1: 9.4 %
L1-V1: 11.8 %
H1l: 3.0 %

L1l: 3.0 %
V1: 7.4 %

None: 3.3 %

09/2015 -> 01/2016 (~4 months)

/ LIGO network duty factor

01 Double interferometer l._)\-}

Single iterferometer ..".J'. 1/

B No interferometer (23.8%]

S, 11/2016 -> 08/2017 (~9 months)

W, 05/2023 -> 01/2024 (~ 8 months)

LIGO network duty factor Network duty factor

[1368975618-1389456018]
M Double interferometer [53.4%]

B Single interferometer [29.7%]
M No interferometer [16.6%]

B Double interferometer :l"' Y _

Single interferometer [29.5%

B No interferometer :'.-_)l 1'.'.';




Analysis of the remaining 3 months of Ot

» We applied the 3 networks to the remaining 3 months of L1 in O1 excluding the 1 month period
already used for training and testing and know injections

* Periods around known GW detections have been examined separately

Classifier [T GW150914 identified with Ps =1 |

. GW151012 was detected by
| i i LVKin L1 with a SNR~6 (our |
N Ps =1 > Ao | training set has a minimum of 8) |
e Po=1-106 -> 426 Fie S

‘ Ps:O -> /120 "’

Blips |GW151226 has masses not in the
GW150914 | | rangeused inour training set |

GW151012
GW151226

Selected triggers
I I | 99
3 4 4
A= —logi1o(1 — Ps)

5
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Triggers found in the remaining 3 months of Ot

@ Selection cut: Ps=1

CNN TCN IT
Samples with Ps=1 in single-det time 2 14 2
Samples with Ps=1 in double-det time 2 01" 14

@ Only one event common to the three analyses: L1-only at
GPS=1135945474.0 (2016-01-04 12:24:17 UTC)

* Trigger rate excess for TCN. At the limits of expected trigger count for single-detector
times. Exceed expectation for multiple detector times (clusters of triggers observed during
three periods of O1 -- under further investigations).

A. Trovato, Unlocking Gravity Through Computation, 10th Dec 2024



Q-scan segment 4th January 2016
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Frequency [HZ]

0.1 02 03 04 05 0.6 0.7 0.8 0.¢
Time [seconds] from 2016-01-04 12:24:17 UTC (1135945474

(\)
-
-

Frequency [HZ]
=
-

N
-
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—_ st DD N
- N - )
Normalised energy

)

0.336 0344 0.352 036 0368 0.376 0.384 0.392

0.4

0.408

Time [seconds] from 2016-01-04 12:24:17 UTC (1135945474 .0)

— — \ \® oY)
- ) - ) -
Normalised energy

)

0
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Is it a Blip?

« Gravity Spy finds a Blip at 1135945474.373

* [n general the population of Blips compatible with background: Jan 4 outlier for this population

- Blip example
Classifier IT

=
(W]

Normalized energy

.E-.
I
St
>
J
c
i,
>
o
¥
LL

Blips

GW150914
GW151012
GW151226

-0.125 0.0 0.125
Time (s)

Jan 4, 2016

—

Frequency [HZ]

3 5

4
—logi10(1 — Ps)

0.336 0344 0352 036 0368 0376 0384 0392 04 0408
Time [seconds] from 2016-01-04 12:24:17 UTC (1135945474.0)
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Has it an astrophysical origin?

@ Checks that the transient signal is compatible with a GW waveform model

v ‘Bayesian parameter estimation: Bilby

v Independent check: denoising convolutional neural network by Bacon et al 2023
Mach. | earn.: Sci. Technol. 4 035024

S

Clean Corrupted

reconstructed
clean input

Latent Denoising: model that takes

Decoder noisy signals and returns clean
fo signals

Enconder and decoder are CNNs
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https://iopscience.iop.org/article/10.3847/1538-4365/ab06fc
https://iopscience.iop.org/article/10.1088/2632-2153/acd90f
https://iopscience.iop.org/article/10.1088/2632-2153/acd90f

luminosity distance

1

eff

Corner plot

GPS = 1135945474.373+0076

SNR = 11.34%

M = 30.181%3M

my = 507504 0

my = 24.475°2 M,

e 0.4
Heff = 0061_()5

Consistent with BBH population
observed so far




