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Curvature beyond smooth spacetimes

Why at all?
physically relevant models (matched spacetimes, impulsive waves, ...)
PDE point-of-view
singularities vs curvature blow-up — CCH of Penrose
approaches to Quantum Gravity (no metric, e.g. causal sets)

Why does it matter?
Basic geometric properties change even if g ∈ C1,α.

Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 2 / 17



Curvature beyond smooth spacetimes

Why at all?
physically relevant models (matched spacetimes, impulsive waves, ...)
PDE point-of-view
singularities vs curvature blow-up — CCH of Penrose
approaches to Quantum Gravity (no metric, e.g. causal sets)

Why does it matter?
Basic geometric properties change even if g ∈ C1,α.

Squeezing a sphere:
Equator still geodesic
but it’s always shorter to
deviate into hemispheres
(Hartman-Wintner ’52)
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How to detect curvature: A glimpse on Riemannian world

Sectional curvature Sec(X, Y ) = ⟨R(X, Y )Y, X⟩
∥X∥2∥Y ∥2 − ⟨X, Y ⟩2

Theorem (Toponogov) Sec ≥ K ⇐⇒
For all (small) geodesic triangles △abc in (M, h) consider a comparison
triangle △āb̄c̄ in the 2D space of const. curvature K. Then for all for all
p, q on its sides and corresponding comparison points p̄, q̄

dh(p, q) ≥ d̄(p̄, q̄).
Triangle condition

needs no manifold structure
only distances between pts.
works on metric spaces
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Sectional curvature bounds for metric spaces

Definition (Length space) (X, d) with d intrinsic, i.e.

d(x, y) = inf{L(γ) | γ from x to y continuous}

geodesics γ : [0, 1]→ X with L(γ) = d
(
γ(0), γ(1)

)
Definition (Synthetic curvature bounds)
A length space has curvature bounded below by K if for all (small)
triangles △abc and their comparison triangles △āb̄c̄ in a space of constant
curvature K and all points p, q on its sides and corresponding p̄, q̄

d(p, q) ≥ d̄(p̄, q̄).

curvature bounded below / above: Alexandrov spaces / CAT(K)-spaces
rich theory since the 1980-ies: GH-convergence, Gromov compactness thm.
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curvature K and all points p, q on its sides and corresponding p̄, q̄

d(p, q) ≥ d̄(p̄, q̄).

curvature bounded below / above: Alexandrov spaces / CAT(K)-spaces
rich theory since the 1980-ies: GH-convergence, Gromov compactness thm.

Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 4 / 17



Sectional curvature bounds for metric spaces

Definition (Length space) (X, d) with d intrinsic, i.e.

d(x, y) = inf{L(γ) | γ from x to y continuous}

geodesics γ : [0, 1]→ X with L(γ) = d
(
γ(0), γ(1)

)
Definition (Synthetic curvature bounds)
A length space has curvature bounded below by K if for all (small)
triangles △abc and their comparison triangles △āb̄c̄ in a space of constant
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How to detect curvature: Lorentzian world

Sectional curvature Sec(X, Y ) = ⟨R(X, Y )Y, X⟩
⟨X, X⟩⟨Y, Y ⟩ − ⟨X, Y ⟩2

Kulkarni (1979): If Sec is bounded below (above), then it is constant.

Definition (“Correct” curvature bounds, Andersson-Howard 1998)
A smooth Lorentzian manifold has Sec ≥ K if spacelike sectional
curvatures ≥ K and timelike sectional curvatures ≤ K.

Theorem (Alexander-Bishop 2008)
A smooth Lorentzian manifold has Sec ≥ K if for all (small) geodesic
△abc and their comparison △āb̄c̄ in 2D space of const. curvature K
(Minkowski, (anti-)de Sitter) and all p, q resp. p̄, q̄

dsigned(p, q) ≥ d̄signed(p̄, q̄).
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How to go beyond Lorentzian manifolds?

Riemannian manifolds ⊊ metric (length) spaces

Lorentzian mfs. / spacetimes ⊊ ?

What is the analogue of metric (length) spaces in the Lorentzian setting?

Serious issue:
natural analogue to distance: time separation function

τ(p, q) = sup{L(γ)| γ future dir. causal from p to q}

but triangle inequality is reversed ; no metric structure

; Lorentzian (pre-)length spaces (Kunzinger-Sämann 2018)
based on (Kronheimer-Penrose 1967)
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Lorentzian (pre-)length spaces
Causal space: X (metrizable) topological space with abstract causality:

≤ preorder on X, ≪ transitive relation contained in ≤
Abstract time separation: τ : X ×X → [0,∞] lower semicontinuous

Definition (Kunzinger-Sämann 2018)
(X,≪,≤, τ) is a Lorentzian pre-length space if for p ≤ q ≤ r

τ(p, r) ≥ τ(p, q) + τ(q, r) and τ(p, q)
{

= 0 if x ≰ y
> 0 ⇔ x≪ y

Examples
smooth spacetimes (M, g) with usual time separation function τ

Lorentz-Finsler spacetimes, spacetimes of low regularity (g ∈ C0 +...)
finite directed graphs (causal sets)

Lorentzian causality theory τ intrinsic. . . Lorentzian length space
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Timelike curvature via triangle comparison
Definition (Synthetic curvature bounds)
(X,≪,≤, τ) has timelike curvature ≥ K if

1 some technical conditions hold
2 for all small timelike triangles ∆abc and their comparison ∆āb̄c̄ in

MK and all p, q resp. p̄, q̄

τ(p, q) ≤ τ̄(p̄, q̄).
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Faithful extension of
sectional curvature bounds
to “metric” Lorentzian setting
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Selected results
Theorem (Kunzinger-Sämann 2018, Beran-Sämann 2022)
In a strongly causal Lorentzian pre-length space with timelike curvature
bounded below timelike geodesics do not branch.

Theorem (Grant-Kunzinger-Sämann 2019)
A timelike geodesically complete spacetime or LLS is inextendible as a
regular LLS, i.e., any LLS-extension necessarily has unbounded curvature.

Extends (Beem-Ehrlich) and C0-result (Galloway-Ling-Sbierski 2018).

Splitting theorem (Beran-Ohanyan-Rott-Solis 2023)
Let (X,≪,≤, τ) be a globally hyperbolic LLS with global timelike K ≥ 0.
If X contains a complete timelike line (+ some technical conditions) then
it splits into a product R× S with S an Alexandrov space with K ≥ 0.

Generalises smooth Lorentzian as well as synthetic Riemannian results.
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More on Lorentzian (pre-)length spaces

causal ladder (Kunzinger-Sämann 2018, Aké Hau-Cabrera-Solis 2020)
generalized cones, i.e., Lorentzian warped products of length spaces
with 1-dim base and singularity theorems (gen. FLRW-spacetimes)

(Alexander-Graf-Kunzinger-Sämann 2021)
null distance & Lorentzian length spaces (Kunzinger-S. 2022)
gluing of Lorentzian length spaces (Beran-Rott 2022)
time functions on Lorentzian (pre-)length spaces

(Burtscher-García-Heveling 2021)
Lorentzian Hausdorff dimension, measure (McCann-Sämann 2021)
causal boundaries (Ake Hau-Burgos-Solis 2023,

Burgos-Flores-Herrera 2023)
. . .
machine learning in spacetimes (Law-Lucas 2023)
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Ricci bounds via optimal transport: the basic idea

Optimal Transport: (Monge, Kantorovich) move matter (distribution
µ1) in X in the cheapest / optimal way to (µ2 in) Y

Minimize ∫
X×Y

c(x, y) dπ(x, y)

over couplings π ∈ P(X × Y ) w. given marginals
(prX)♯π = µ1, (prY )♯π = µ2

What is optimal depends on cost,
distances and geometry !

Turn this on its head:
define curvature by requiring that
OT behaves as in model spaces

- Riemannian case: cost c = d

- Lorentzian case: cost c = τ

Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 11 / 17



Ricci bounds via optimal transport: the basic idea

Optimal Transport: (Monge, Kantorovich) move matter (distribution
µ1) in X in the cheapest / optimal way to (µ2 in) Y

Minimize ∫
X×Y

c(x, y) dπ(x, y)

over couplings π ∈ P(X × Y ) w. given marginals
(prX)♯π = µ1, (prY )♯π = µ2

What is optimal depends on cost,
distances and geometry !

Turn this on its head:
define curvature by requiring that
OT behaves as in model spaces

- Riemannian case: cost c = d

- Lorentzian case: cost c = τ

Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 11 / 17



Ricci bounds via optimal transport: the basic idea

Optimal Transport: (Monge, Kantorovich) move matter (distribution
µ1) in X in the cheapest / optimal way to (µ2 in) Y

Minimize ∫
X×Y

c(x, y) dπ(x, y)

over couplings π ∈ P(X × Y ) w. given marginals
(prX)♯π = µ1, (prY )♯π = µ2

What is optimal depends on cost,
distances and geometry !

Turn this on its head:
define curvature by requiring that
OT behaves as in model spaces

- Riemannian case: cost c = d

- Lorentzian case: cost c = τ

Transporting clouds of
points on the sphere

Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 11 / 17



Ricci bounds via optimal transport: the basic idea

Optimal Transport: (Monge, Kantorovich) move matter (distribution
µ1) in X in the cheapest / optimal way to (µ2 in) Y

Minimize ∫
X×Y

c(x, y) dπ(x, y)

over couplings π ∈ P(X × Y ) w. given marginals
(prX)♯π = µ1, (prY )♯π = µ2

What is optimal depends on cost,
distances and geometry !

Turn this on its head:
define curvature by requiring that
OT behaves as in model spaces

- Riemannian case: cost c = d

- Lorentzian case: cost c = τ

Transporting clouds of
points on the sphere

Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 11 / 17



Ricci Bounds via Optimal Transport: Riemannian case

Thm. (Ric. bds. & displacement convexity, Lott-Villani, Sturm 2006-09)
(M, g) complete Riemannian manifold

Ric ≥ 0 ⇐⇒ (M, dg, volg) is an RCD(0, n)-space

Definitions. On a metric measure space (X, d,m) we define

Wasserstein distance: W2(µ0, µ1) =
(

inf
π∈Π

∫
X×X d(x, y)2 dπ(x, y)

) 1
2

Wasserstein geodesic: continuous curve (µt)0≤t≤1 in P2(X) with

W2(µs, µt) = |t− s| ·W2(µ1, µ2)

Entropy functional: Ent(µ|m) = −
∫

ρ1−1/N dm for µ = ρm

CD(0, N)-space: Ent(µ|m) convex along Wasserstein geodesics

;theory of (R)CD-spaces: stability under measured GH-convergence
Roland Steinbauer, University of Vienna Synthetic curvature EPS Gravitation, Prague ’24 12 / 17
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Ricci Bounds via Optimal Transport: Lorentzian case
Thm. (Ric. bds. & displacement conv., McCann, Mondino-Suhr 2020)
(M, g) globally hyperbolic spacetime

Ric(X, X) ≥ 0 for X timelike ⇐⇒ (M, dg, volg) is TCD(0, n)-space

Definitions. Measured Lorentzian pre-length space (X, d,m≪,≤, τ)
OT & causality (Eckstein-Miller 2017) π ∈ Π≪

p-Lorentz Wasserstein distance: (0 < p ≤ 1)
lp(µ1, µ2) =

(
supπ∈Π≪

∫
X×X τ(x, y)p dπ(x, y)

)1/p

Entropy functional: Ent(µ|m) = −
∫

ρ log(ρ)dm for µ = ρm

TCD(K, N): along lp-geos µt we have for e(t) := Ent(µt|m)

e′′(t)− 1
N

e′(t)2 ≥ K

∫
X×X

τ(x, y)2π(dxdx)
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Selected results

Hawking singularity theorem in TCD (Cavaletti-Mondino 2024)
Let (X, d,m≪,≤, τ) be a globally hyperbolic measured LLS such that

1 TCD(0, N) (replaces (SEC)), (some technicalities hold) with
2 a Borel achronal FTC set V w. synthetic mean curvature ≤ H0 < 0.

Then τV ≤ DH0,0,N on I+(V ).

Complements low regularity spacetime singularity theorems
(Graf 2020, Kunzinger-Ohanyan-Schinnerl-S. 2022, S. 2023)

Synthetic vacuum Einstein equations (Mondino-Suhr 2023)
Differential calculus for time functions on LLS:

(Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann 2024)
Lorentzian splitting (new proof for class. result, synthetic in progress)

(Braun-Gigli-McCann-Ohanyan-Sämann 2024)
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Outlook

(Measured) Lorentzian Length Spaces (X, d,m≪,≤, τ)
provide a general mathematical setting for

▶ sectional curvature and
▶ Ricci curvature (bounds)

that contains
▶ low regularity spacetimes but also
▶ discrete spaces

Gives framework for
approaches to non-smooth spacetime geometry

strongly causal g ∈ C0,1, g ∈ C0 + causally plain
fundamentally discrete approaches to QG

causal set theory, causal fermion systems
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Outlook: Causal set theory
ingredients: causal set (X,≤), partial order

locally finite: J(x, y) = {z : x ≤ z ≤ y} finite
CS hypothesis: QT of causal sets X; (M, g) approximation of X

C(M, ρC) ∋ X ←→ (M, g)

Hauptvermutung of CST
X can be embedded at density ρC into
two distinct spacetimes iff they are
“close”.

(X,≪,≤, τ) is a Lorentzian pre-length space (≪:=<)
▶ chain: C := (xi)n

i=1: xi < xi+1 ▶ length: L(C) = n

▶ τ(x, y) := sup{L(C) : C chain from x to y}

Hauptvermutung translates into statement on convergence of LLS.
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