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• Goal: understand whether ghost free massive gravity is a viable 
theory of gravity — a computational problem! 

• Massive gravity — linear and non-linear


• Spherical dynamics; numerical and analytic work shows 
spherical symmetry is problematic


• Full numerical analysis to go beyond non-generic spherical case

Plan for talk



• Massive gravity in asymptotically flat 4d has a long history


• Initially considered by Fierz + Pauli in linear theory — there is a 
unique ghost free mass term


• General mass term d.o.f. 2  6 with one a ghost


• For Fierz-Pauli mass no ghost (due to extra constraint), giving 
2 (spin-2) + 2 (spin-1) + 1 (spin-0) d.o.f.


• The (Boulware-Deser) ghost generally returns at non-linear level


• Except for dRGT massive gravity which is ghost free non-linearly

→

Massive gravity



• Adding a mass is perhaps the most natural IR modification


• Cosmology provides an interesting motivation — perhaps a 
cosmological mass can `explain’ dark energy


• Clearly a mass would have to be small  ~ few MPc, 
but cosmological masses are still viable


• In particular GW170817 does not provide strong constraint 

∼ 10−30eV

Motivation



Linear massive gravity
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I. INTRODUCTION

II. BRIEF REVIEW OF DRGT MASSIVE GRAVITY

We now briefly review the 4d dRGT massive gravity theory with the minimal and next to minimal mass terms.
This theory requires a reference metric fµ⌫ in additional to the usual metric gµ⌫ . We will formulate it in unitary
gauge using a symmetric vierbein Kµ⌫ which is defined from the metric and reference metric as,

gµ⌫ = (f�1)↵�K↵µK�⌫ (1)

where (f�1)µ⌫ is the inverse to the reference metric. While (up to an overall sign) there is a unique map from
components of Kµ⌫ to those of the metric, later we will formulate the dynamics in terms of Kµ⌫ since the map to the
metric is then explicit, whereas going the other way the map is generally implicitly given by roots of polynomials. We
may equivalently write the relation as,

fµ
⌫ = (g�1)µ↵f↵⌫ = Kµ

↵K
↵
⌫ (2)

so that we may write Kµ
⌫ =

p
fµ

⌫ . We also define (K�1)µ⌫ as the inverse to Kµ⌫ in the sense that (K�1)µ↵K↵⌫ = �µ⌫ .
In what follows we shall take the reference metric to be Minkowski, and for now will choose Cartesian coordinates

xµ = (t, x, y, z), so that fµ⌫ = (f�1)µ⌫ = ⌘µ⌫ = diag (�1,+1,+1,+1). The action for the massive gravity theory is,

S =

Z
d4x

p
g

✓
1

2
R� 1

2
m2

1L(1) � 1

2
m2

2L(2) + L(matter)[g]

◆

(3)

where,

L1 = 2K � 6

L2 =
1

2
K2 � 1

2
Kµ⌫K

µ⌫ � 3 (4)

give the minimal and next to minimal mass terms. We refer to the later mass term later as the ‘quadratic’ mass
term due to its quadratic dependence on Kµ⌫ in the action. We note these two mass terms also include cosmological
constants to cancel ‘tadpoles’ and ensure that the Minkowski metric is a solution. The resulting Einstein equation is,

Eµ⌫ ⌘ Gµ⌫ +m2
1M

(1)
µ⌫ +m2

1M
(2)
µ⌫ � Tµ⌫ = 0 (5)

where the mass terms contributions are given by,

M (1)
µ⌫ = �Kµ⌫ +Kgµ⌫ � 3gµ⌫

M (2)
µ⌫ =

1

2
Kµ↵K

↵
⌫ � 1

2
KKµ⌫ � 1

4

�
K↵�K

↵� �K2
�
gµ⌫ � 3

2
gµ⌫

(6)

From the contracted Bianchi identity and matter stress energy conservation we may take the divergence of the Einstein
equation to derive,

Vµ = r⌫
⇣
m2

1M
(1)
µ⌫ +m2

1M
(2)
µ⌫

⌘
(7)

which we refer to as the ‘vector equation’.
Small fluctuations about flat space have a mass m2 = m2

1 +m2
2. Expanding,

gµ⌫ = ⌘µ⌫ + hµ⌫ (8)

Gµ⌫ +
1

2
m2 (hµ⌫ � h⌘µ⌫) = Tµ⌫ (9)

one finds,

�1

2
(r2 �m2)hµ⌫ + @(µ�⌫) = Tµ⌫ � 1

3
⌘µ⌫T (10)

3

for a conserved matter stress tensor, so one obeying @µTµ⌫ = 0, and where �µ = @⇢h⇢µ � 1
2@µh together with the

constraints,

h = � 2

3m2
T , @⇢h⇢µ = � 2

3m2
@µT (11)

While in GR we have diffeomorphism invariance, we see here the second relation above as a particular gauge that is
chosen by the theory. These 5 constraints on @⇢h⇢µ and h reduce the number of degrees of freedom from 10 down to
5, and in particular the special structure of the Fierz-Pauli term ensures that we obtain an algebraic constraint on h
rather than it obeying a wavelike equation, which would yield an additional degree of freedom which is a ghost. Part
of the purpose of this paper is to elucidate the analogous algebraic constraint in the full non-linear massive gravity.

As we take the massless limit, m ! 0 holding Tµ⌫ fixed, it is clear we do not recover linearized GR in some
gauge, � 1

2r
2hµ⌫ + @(µ�⌫) = Tµ⌫ � 1

2⌘µ⌫T , due to the couplings to the trace of the stress tensor being different.
However we also see from the constraint on h that in this limit then h diverges and hence linear theory breaks down.
The expectation is then that one may recover GR like behaviour due to non-linearity, and this is the ‘Vainshtein
mechanism’.

We may make the 5 propagating degrees of freedom more explicit by writing the metric as,

hµ⌫ = aµ⌫ +
1

m2
@(µA⌫) +

1

2
⇡⌘µ⌫ +

1

m2
@µ@⌫⇡ (12)

and then the spin-2, spin-1 and spin-0 degrees of freedom (d.o.f.) are encapsulated in aµ⌫ , Aµ and ⇡ respectively,
with two local invariances,

aµ⌫ ! aµ⌫ + @(µv⌫)
Aµ ! Aµ �m2vµ
⇡ ! ⇡

,
aµ⌫ ! aµ⌫ + �

2 ⌘µ⌫
Aµ ! Aµ + @µ�
⇡ ! ⇡ � �

(13)

for vµ and � a covector and scalar respectively. These then obey the equations of motion,

�1

2

�
r2 �m2

�
aµ⌫ = Tµ⌫ � 1

2
⌘µ⌫T , �1

2

�
r2 �m2

�
Aµ = 0 , �1

2

�
r2 �m2

�
⇡ =

1

3
T

(14)

and gauge conditions,

@⇢a⇢µ � 1

2
@µa = �1

2
Aµ , @ ·A = �m2 (a+ 3⇡) (15)

These five conditions are preserved by the gauge transformations vµ and � that obey
�
r2 �m2

�
vµ = 0 and�

r2 �m2
�
� = 0 and together thus reduce aµ⌫ , Aµ to 2 d.o.f. each, and together with ⇡ yields the five.

III. VECTOR EQUATION AND SCALAR CONSTRAINT

We now return to the full non-linear theory. In order to reveal the spin-1 and spin-0 constraints it is natural to
consider diffs to the metric taking the form,

�gµ⌫ = r(µṽ⌫) , ṽµ = Kµ↵⌘
↵�v� (16)

Now the action varies to give,

�vS =

Z
d4x

p
g v↵⇠

↵ , ⇠↵ = K↵�⌘
�µVµ (17)

The equation of motion from varying vµ is then ⇠µ = 0, which is just the same as our previous vector equation Vµ.
Now we consider varying the action with respect to a scalar fluctuation ⇡ taking the form of a diff combined with

a scaling,

�gµ⌫ =
⇡

2

�
m2

1gµ⌫ +m2
2Kµ⌫

�
+r(µṽ⌫) , ṽµ = Kµ↵⌘

↵�@�⇡ (18)

we obtain the scalar equation,

�⇡S = �
Z

d4x
p
g ⇡⇧ , ⇧ =

1

2

�
m2

1g
µ⌫ +m2

2K
µ⌫
�
Eµ⌫ +r · ⇠ (19)
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• Linearizing about flat space we see the van Dam-Veltman-
Zakharov (vDVZ) discontinuity as 


• … but also see linear theory breaks down, the Vainshtein effect

m → 0



• Key observation of dRGT is requirement of reference metric  


• What should this be? Here we will take it as Minkowski.


• Using this introduce symmetric vierbein; 

fμν
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• Using this we may write the theory as;


• This theory admits Minkowski vacuum solution


• There is one more mass term which we ignore here — it is 
thought not to be compatible with phenomenology
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Minimal mass term

Next-to-Minimal mass term

4
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(2)
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⌘
(34)

which we refer to as the ‘vector equation’.
Small fluctuations about flat space have a mass m2 = m2

1 +m2
2. Expanding,

gµ⌫ = ⌘µ⌫ + hµ⌫ (35)

Kµ⌫ = ⌘µ⌫ +
1

2
hµ⌫ (36)

Gµ⌫ +
1

2
m2 (hµ⌫ � h⌘µ⌫) = Tµ⌫ (37)

one finds,

�1

2
(r2 �m2)hµ⌫ + @(µ�⌫) = Tµ⌫ � 1

3
⌘µ⌫T (38)

for a conserved matter stress tensor, so one obeying @µTµ⌫ = 0, and where �µ = @⇢h⇢µ � 1
2@µh together with the

constraints,

h = � 2

3m2
T , @⇢h⇢µ = � 2

3m2
@µT (39)

While in GR we have diffeomorphism invariance, we see here the second relation above as a particular gauge that is
chosen by the theory. These 5 constraints on @⇢h⇢µ and h reduce the number of degrees of freedom from 10 down to
5, and in particular the special structure of the Fierz-Pauli term ensures that we obtain an algebraic constraint on h
rather than it obeying a wavelike equation, which would yield an additional degree of freedom which is a ghost. Part
of the purpose of this paper is to elucidate the analogous algebraic constraint in the full non-linear massive gravity.

GHOST:

hr2h+ h = � 2

3m2
T (40)
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• Yields massive Einstein equations;


• The Bianchi identities imply;


• This vector equation is only one-derivative, thus a constraint that 
reduces  d.o.f.10 → 6
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II. BRIEF REVIEW OF DRGT MASSIVE GRAVITY

We now briefly review the 4d dRGT massive gravity theory with the minimal and next to minimal mass terms.
This theory requires a reference metric fµ⌫ in additional to the usual metric gµ⌫ . We will formulate it in unitary
gauge using a symmetric vierbein Kµ⌫ which is defined from the metric and reference metric as,
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⌫ =

p
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⌫ . We also define (K�1)µ⌫ as the inverse to Kµ⌫ in the sense that (K�1)µ↵K↵⌫ = �µ⌫ .
In what follows we shall take the reference metric to be Minkowski, and for now will choose Cartesian coordinates
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give the minimal and next to minimal mass terms. We refer to the later mass term later as the ‘quadratic’ mass
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• Let us rewrite out vector constraint as;


• Then it takes an elegant form;


• Then we may construct the scalar constraint as;
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⇠↵ = K↵�⌘
�µVµ = 0 (20)

Now we consider varying the action with respect to a scalar fluctuation ⇡ taking the form of a diff combined with
a scaling,

�gµ⌫ =
⇡

2

�
m2

1gµ⌫ +m2
2Kµ⌫

�
+r(µṽ⌫) , ṽµ = Kµ↵⌘

↵�@�⇡ (21)

we obtain the scalar equation,

�⇡S = �
Z

d4x
p
g ⇡⇧ , ⇧ =

1

2

�
m2

1g
µ⌫ +m2

2K
µ⌫
�
Eµ⌫ +r · ⇠ (22)

Some comments on this variation are in order. Linearizing about flat space, so gµ⌫ = ⌘µ⌫+hµ⌫ and Kµ⌫ = ⌘µ⌫+
1
2hµ⌫ ,

then this variation is simply the spin-0 part of (14), so �gµ⌫ = ⇡
2m

2⌘µ⌫ + @µ@⌫⇡. We note that in the language of
Kµ⌫ this perturbation takes the simple form,

�Kµ⌫ =
⇡
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m2

1Kµ⌫ +m2
2⌘µ⌫

�
+ @µ@⌫⇡ � �̃↵

µ⌫@↵⇡ (23)

where �̃↵
µ⌫ is a connection, determined from the metric connection by the relation,

�↵
µ⌫ = K↵

�(K
�1)�(µ|�̃

�
|⌫)� + (K�1)�(µ|@|⌫)K

↵
� (24)

Returning to the scalar equation itself, we see it has no two derivative terms in the metric (or Kµ⌫). In terms of
Kµ⌫ it can be explicitly written as,

⇧ =
1

2

⇣
m2

1⇧
(1) +m2

2⇧
(2)

⌘
(25)

where we have defined,

⇧(1) = A↵��µ⌫�
(1) @[↵K�]�@[µK⌫]� +m2
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2
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K3

◆
�Kµ⌫Tµ⌫

(26)

We see that ⇧ has no two derivative terms in Kµ⌫ , and hence in the metric, and thus is a constraint equation. The
one derivative terms are determined by the tensors,

A↵��µ⌫⇢
(1) = ⌘�⇢g↵[µg⌫]� + 2(K�1)⇢[�g↵][µ(K�1)⌫]� + 4(K�1)�[↵g�][µ(K�1)⌫]⇢ (27)

A↵��µ⌫⇢
(2) = . . . (28)

IV. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition, working with Kµ⌫ as our dynamical variable. This is more convenient than
using gµ⌫ since the map from Kµ⌫ ! gµ⌫ is explicit. This 3+1 decomposition will allow us to solve the vector and
scalar constraints explicitly. Our starting point is the action, which written in terms of Kµ⌫ takes the rather elegant
form,

S =

Z
|K|

✓
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(1) @[↵K�]�@[µK⌫]� � 1

2
m2

1L1 �
1

2
m2

2L2 + Lmatter

◆
(29)

Note the derivative term is identical to the one in ⇧(1). This is because, in the absence of matter, the terms containing
derivatives of the K matrix in ⇧(1) are simply equal to �R+ 2r · ⇠(1) and the last term is a total divergence. Hence
we see the Einstein-Hilbert term in the action is just given by ⇠ |K|⇧(1).
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A. Vector equation

We consider now the vector equation, ⇠µ = 0, which takes a beautifully simple form,

0 = ⇠µ = V µ↵��@[↵K�]� (61)

with,

V µ↵�� = 2m2
1g

µ↵(K�1)�� +m2
2

�
Kµ↵(K�1)�� + gµ↵g�� +K⇢

⇢g
µ↵(K�1)��

�
(62)

so we see may view this as a linear constraint on the components of @[↵K�]�. Decomposing in 3+1 and expanding
about flat space, so Kµ⌫ ' ⌘µ⌫ , we can write these in terms of our phase space variables as,

V t↵��@[↵K�]� = 2V t[ti]tPi + 2V t[ti]
iP̃ + 2V t[ti]jP̃ij + V tij�@[iKj]� ' �12

�
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1 + 3m2
2
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P̃

V i↵��@[↵K�]� = 2V i[tj]tPj + 2V i[tj]
jP̃ + 2V i[tj]kP̃jk + V ijk�@[jKk]� ' 4

�
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1 + 3m2
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For talk;

V µ↵��@[↵K�]� = 2V µ[tj]tPj + 2V µ[tj]
jP̃ + 2V µ[tj]kP̃jk + V µjk�@[jKk]� (64)

Hence we may regard these 4 equations as linear constraints for the 4 momentum variables P̃ and Pi, and at least
near flat space we may invert this linear system to solve for these momenta. These 4 momenta then depend on all
the metric components Kµ⌫ , including Ktt, through the components of V µ↵��. They also depend linearly on spatial
derivatives of metric components through @[iKj]�, but crucially they do not depend on derivatives of Ktt.

B. Scalar equation

Now we turn to the scalar constraint ⇧ = 0 above. Already we have observed above that it only depends on first
derivatives of Kµ⌫ . However, we may write it in terms of our phase space variables together with Ktt so that it
contains no derivatives of Ktt at all. Firstly since derivatives enter as @[µK⌫]� there can be no K̇tt derivatives, but
this does leave spatial derivatives, @iKtt, in ⇧. However these spatial gradients of Ktt always come in the combination
@[tKi]t, and hence are replaced with the momenta Pi. This now leaves an equation that depends on the phase space
variables and our auxillary variable Ktt, but not on its derivative.

The dependence on the momenta is quadratic. Let us be more explicit about the dependence on Ktt. The (K�1)µ⌫

components can be written as,

(K�1)µ⌫ =
1

|K|Q
µ⌫ (65)

where each component Qµ⌫ is a polynomial in the components of Kµ⌫ , and linear in each one. Hence given the form
of A↵��µ⌫� above we expect that,

|K|4A↵��µ⌫�@[↵K�]�@[µK⌫]� = C4K
4
tt + C3K

3
tt + C2K

2
tt + C1Ktt + C0 (66)

The CA depend on the components of Kµ⌫ other than Ktt, together with the spatial gradients @[iKj]k and also all
the momenta, Pi, P̃ and P̃ij , but no derivatives of these.

However due to the symmetries of the tensor A↵��µ⌫� then for A(1) and A(2) in fact we find,

|K|2A↵��µ⌫�
(1) @[↵K�]�@[µK⌫]� = C 0

2K
2
tt + C 0

1Ktt + C 0
0
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3K
3
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2K
2
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1Ktt + C 00
0 (67)

Since the mass terms have similar structures, then for certain types of matter this constraint may determine Ktt as
the root of a polynomial. Consider as an example matter that is a canonical scalar field � with potential V (�), so

Tµ⌫ = @µ�@⌫�� 1

2
gµ⌫

�
(@�)2 + V (�)

�
(68)

Now restrict to the case of a minimal mass term (so m2 = 0) and consider the scalar constraint as |K|2⇧, so scaled
by the determinant of K. The quadratic gradient term takes the form above. For the remaining terms, the explicit
Ktt dependence of the stress tensor term that enters takes an identical form,

|K|2
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0 (69)
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Returning to the scalar equation itself, we see it has no two derivative terms in the metric (or Kµ⌫). In terms of
Kµ⌫ it can be explicitly written as,
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where we have defined,
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We see that ⇧ has no two derivative terms in Kµ⌫ , and hence in the metric, and thus is a constraint equation. The
one derivative terms are determined by the tensors,

A↵��µ⌫⇢
(1) = ⌘�⇢g↵[µg⌫]� + 2(K�1)⇢[�g↵][µ(K�1)⌫]� + 4(K�1)�[↵g�][µ(K�1)⌫]⇢ (25)

A↵��µ⌫⇢
(2) = . . . (26)

IV. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition, working with Kµ⌫ as our dynamical variable. This is more convenient than
using gµ⌫ since the map from Kµ⌫ ! gµ⌫ is explicit. This 3+1 decomposition will allow us to solve the vector and
scalar constraints explicitly. Our starting point is the action, which written in terms of Kµ⌫ takes the rather elegant
form,

S =

Z
|K|
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(27)

Note the derivative term is identical to the one in ⇧(1). This is because, in the absence of matter, the terms containing
derivatives of the K matrix in ⇧(1) are simply equal to �R+ 2r · ⇠(1) and the last term is a total divergence. Hence
we see the Einstein-Hilbert term in the action is just given by ⇠ |K|⇧(1).

Consider now the canonical conjugate momenta to Kµ⌫ . Firstly the action contains no momentum conjugate to
Ktt since K̇tt does not appear in the Lagrangian. Then the canonical momentum conjugate to Kti and Kij are given
by,

⇡i = |K|Aittµ⌫�
(1) @[µK⌫]� , ⇡ij = |K|Atijµ⌫�

(1) @[µK⌫]� (28)

Rather than use these canonical momenta, we find it is convenient to instead use the simpler momentum variables,

Pi = @[tKi]t , Pij = @[tKi]j (29)

C. Deffayet, J. Mourad, and G. Zahariade ‘12



• Phenomenology complicated — understanding how GR 
behaviour is recovered requires detailed non-linear study


• Taking  we may imagine the solution being a GR solution 
in some particular coordinates such that 


• Called ‘Vainshtein mechanism’


• However must be highly ‘non-linear’

m → 0
Vμ = 0

dRGT massive gravity



dRGT massive gravity

Kμν − ημν ≫ 1

Kμν = ημν + hμν

Region of

GR behaviour

Transition region — where 
‘decoupling limit’ lives

RG ∼
GM
c2

lgrav ∼
ℏ

mc

RVainshtein ∼ (RG l2
grav)

1/3

Object mass M



• Minimal theory does allow Vainshtein mechanism in spherical 
symmetry [Renaux-Petel ’14]


• Previous “state of the art” was that phenomenological 
constraints imply that we need the non-minimal term and;


• Then weak field analysis in static spherical symmetry argued that 
Vainshtein mechanism works [Koyama, Niz, Tasinato ’11; Berezhiani, 
Chkareuli, Gabadadze ’13 ]

dRGT massive gravity

m2
1 , m2

2 > 0



• In our variables the action looks very nice;


• We define momenta for  and  ;


• Due to symmetry there is no  term — and no momentum for 


• Vector constraint - algebraic condition 

Kit Kij

∂tKtt Ktt

4

we obtain the scalar equation,
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Some comments on this variation are in order. Linearizing about flat space, so gµ⌫ = ⌘µ⌫+hµ⌫ and Kµ⌫ = ⌘µ⌫+
1
2hµ⌫ ,

then this variation is simply the spin-0 part of (11), so �gµ⌫ = ⇡
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2⌘µ⌫ + @µ@⌫⇡. We note that in the language of
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where �̃↵
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Returning to the scalar equation itself, we see it has no two derivative terms in the metric (or Kµ⌫). In terms of
Kµ⌫ it can be explicitly written as,
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where we have defined,
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We see that ⇧ has no two derivative terms in Kµ⌫ , and hence in the metric, and thus is a constraint equation. The
one derivative terms are determined by the tensors,

A↵��µ⌫⇢
(1) = ⌘�⇢g↵[µg⌫]� + 2(K�1)⇢[�g↵][µ(K�1)⌫]� + 4(K�1)�[↵g�][µ(K�1)⌫]⇢ (25)

A↵��µ⌫⇢
(2) = . . . (26)

IV. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition, working with Kµ⌫ as our dynamical variable. This is more convenient than
using gµ⌫ since the map from Kµ⌫ ! gµ⌫ is explicit. This 3+1 decomposition will allow us to solve the vector and
scalar constraints explicitly. Our starting point is the action, which written in terms of Kµ⌫ takes the rather elegant
form,

S =

Z
|K|
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Note the derivative term is identical to the one in ⇧(1). This is because, in the absence of matter, the terms containing
derivatives of the K matrix in ⇧(1) are simply equal to �R+ 2r · ⇠(1) and the last term is a total divergence. Hence
we see the Einstein-Hilbert term in the action is just given by ⇠ |K|⇧(1).

Consider now the canonical conjugate momenta to Kµ⌫ . Firstly the action contains no momentum conjugate to
Ktt since K̇tt does not appear in the Lagrangian. Then the canonical momentum conjugate to Kti and Kij are given
by,

⇡i = |K|Aittµ⌫�
(1) @[µK⌫]� , ⇡ij = |K|Atijµ⌫�

(1) @[µK⌫]� (28)

Rather than use these canonical momenta, we find it is convenient to instead use the simpler momentum variables,

Pi = @[tKi]t , Pij = @[tKi]j (29)

4

we obtain the scalar equation,

�⇡S = �
Z

d4x
p
g ⇡⇧ , ⇧ =

1
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m2

1g
µ⌫ +m2

2K
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Some comments on this variation are in order. Linearizing about flat space, so gµ⌫ = ⌘µ⌫+hµ⌫ and Kµ⌫ = ⌘µ⌫+
1
2hµ⌫ ,

then this variation is simply the spin-0 part of (11), so �gµ⌫ = ⇡
2m

2⌘µ⌫ + @µ@⌫⇡. We note that in the language of
Kµ⌫ this perturbation takes the simple form,
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Returning to the scalar equation itself, we see it has no two derivative terms in the metric (or Kµ⌫). In terms of
Kµ⌫ it can be explicitly written as,
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where we have defined,
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We see that ⇧ has no two derivative terms in Kµ⌫ , and hence in the metric, and thus is a constraint equation. The
one derivative terms are determined by the tensors,

A↵��µ⌫⇢
(1) = ⌘�⇢g↵[µg⌫]� + 2(K�1)⇢[�g↵][µ(K�1)⌫]� + 4(K�1)�[↵g�][µ(K�1)⌫]⇢ (25)

A↵��µ⌫⇢
(2) = . . . (26)

IV. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition, working with Kµ⌫ as our dynamical variable. This is more convenient than
using gµ⌫ since the map from Kµ⌫ ! gµ⌫ is explicit. This 3+1 decomposition will allow us to solve the vector and
scalar constraints explicitly. Our starting point is the action, which written in terms of Kµ⌫ takes the rather elegant
form,

S =

Z
|K|

✓
�1

2
A↵��µ⌫�

(1) @[↵K�]�@[µK⌫]� � 1

2
m2

1L1 �
1

2
m2

2L2 + Lmatter

◆
(27)

Note the derivative term is identical to the one in ⇧(1). This is because, in the absence of matter, the terms containing
derivatives of the K matrix in ⇧(1) are simply equal to �R+ 2r · ⇠(1) and the last term is a total divergence. Hence
we see the Einstein-Hilbert term in the action is just given by ⇠ |K|⇧(1).

Consider now the canonical conjugate momenta to Kµ⌫ . Firstly the action contains no momentum conjugate to
Ktt since K̇tt does not appear in the Lagrangian. Then the canonical momentum conjugate to Kti and Kij are given
by,

⇡i = |K|Aittµ⌫�
(1) @[µK⌫]� , ⇡ij = |K|Atijµ⌫�

(1) @[µK⌫]� (28)

Rather than use these canonical momenta, we find it is convenient to instead use the simpler momentum variables,

Pi = @[tKi]t , Pij = @[tKi]j (29)

5

Consider now the canonical conjugate momenta to Kµ⌫ . Firstly the action contains no momentum conjugate to
Ktt since K̇tt does not appear in the Lagrangian. Then the canonical momentum conjugate to Kti and Kij are given
by,

⇡i = |K|Aittµ⌫�
(1) @[µK⌫]� , ⇡ij = |K|Atijµ⌫�

(1) @[µK⌫]� (30)

Rather than use these canonical momenta, we find it is convenient to instead use the simpler momentum variables,

Pi = @[tKi]t , Pij = @[tKi]j (31)

From above we see Pi and Pij are linearly related to ⇡i and ⇡ij , with coefficients that are non-linear in the components
Kµ⌫ . Now using the (spatial part of the) reference metric we may decompose the spatial components Kij and our
momenta Pij into their traceless parts, K̃ij and P̃ij , and trace parts K̃ and P̃ , as,

Kij = K̃ij + K̃�ij , Pij = P̃ij + P̃ �ij , �ijK̃ij = �ijP̃ij = 0 (32)

We now regard the upper triangular components of the symmetric spatial traceless K̃ij (so j � i) as the dynamical
variables of our massive gravity theory, in the sense that they have second order time evolution equations. As we will
shortly discuss, the remaining components K̃ and Kit have first order evolution equations from the vector equation,
and the last component Ktt is algebraically determined (at least for conventional matter) in terms of the other variables
by the scalar constraint. We may write coordinates on the phase space as,

(Kti, K̃, K̃ij , Pi, P̃ , P̃ij) (33)

and then Ktt is a function of these phase space variables and their first derivatives which we can regard as an auxillary
variable. We now explicitly show how this works.

A. Vector equation

We consider now the vector equation, ⇠µ = 0, which takes a beautifully simple form,

0 = V µ↵��@[↵K�]� (34)

with,
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1g

µ↵(K�1)�� +m2
2

�
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⇢g
µ↵(K�1)��

�
(35)

so we see may view this as a linear constraint on the components of @[↵K�]�. Decomposing in 3+1 and expanding
about flat space, so Kµ⌫ ' ⌘µ⌫ , we can write these in terms of our phase space variables as,

V t↵��@[↵K�]� = 2V t[ti]tPi + 2V t[ti]
iP̃ + 2V t[ti]jP̃ij + V tij�@[iKj]� ' �12
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V t↵��@[↵K�]� = 2V t[ti]tPi + 2V t[ti]
iP̃ + 2V t[ti]jP̃ij + V tij�@[iKj]�

V i↵��@[↵K�]� = 2V i[tj]tPj + 2V i[tj]
jP̃ + 2V i[tj]kP̃jk + V ijk�@[jKk]� (37)

Hence we may regard these 4 equations as linear constraints for the 4 momentum variables P̃ and Pi, and at least
near flat space we may invert this linear system to solve for these momenta. These 4 momenta then depend on all
the metric components Kµ⌫ , including Ktt, through the components of V µ↵��. They also depend linearly on spatial
derivatives of metric components through @[iKj]�, but crucially they do not depend on derivatives of Ktt.

B. Scalar equation

Now we turn to the scalar constraint ⇧ = 0 above. Already we have observed above that it only depends on first
derivatives of Kµ⌫ . However, we may write it in terms of our phase space variables together with Ktt so that it
contains no derivatives of Ktt at all. Firstly since derivatives enter as @[µK⌫]� there can be no K̇tt derivatives, but
this does leave spatial derivatives, @iKtt, in ⇧. However these spatial gradients of Ktt always come in the combination

[ Kozuszek, de Rham, Tolley, TW ’23 ]
Dynamics and 3+1 decomposition



• Now scalar constraint takes the form;


• This is algebraic in   when writing in terms of momenta 


• ADM like formulation; traceless part of  dynamical

Ktt Pi, Pij

Kij

Dynamics and 3+1 decomposition

4

we obtain the scalar equation,

�⇡S = �
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Some comments on this variation are in order. Linearizing about flat space, so gµ⌫ = ⌘µ⌫+hµ⌫ and Kµ⌫ = ⌘µ⌫+
1
2hµ⌫ ,

then this variation is simply the spin-0 part of (11), so �gµ⌫ = ⇡
2m

2⌘µ⌫ + @µ@⌫⇡. We note that in the language of
Kµ⌫ this perturbation takes the simple form,
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where �̃↵
µ⌫ is a connection, determined from the metric connection by the relation,
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Returning to the scalar equation itself, we see it has no two derivative terms in the metric (or Kµ⌫). In terms of
Kµ⌫ it can be explicitly written as,
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We see that ⇧ has no two derivative terms in Kµ⌫ , and hence in the metric, and thus is a constraint equation. The
one derivative terms are determined by the tensors,

A↵��µ⌫⇢
(1) = ⌘�⇢g↵[µg⌫]� + 2(K�1)⇢[�g↵][µ(K�1)⌫]� + 4(K�1)�[↵g�][µ(K�1)⌫]⇢ (25)

A↵��µ⌫⇢
(2) = . . . (26)

IV. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition, working with Kµ⌫ as our dynamical variable. This is more convenient than
using gµ⌫ since the map from Kµ⌫ ! gµ⌫ is explicit. This 3+1 decomposition will allow us to solve the vector and
scalar constraints explicitly. Our starting point is the action, which written in terms of Kµ⌫ takes the rather elegant
form,

S =

Z
|K|
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Note the derivative term is identical to the one in ⇧(1). This is because, in the absence of matter, the terms containing
derivatives of the K matrix in ⇧(1) are simply equal to �R+ 2r · ⇠(1) and the last term is a total divergence. Hence
we see the Einstein-Hilbert term in the action is just given by ⇠ |K|⇧(1).

Consider now the canonical conjugate momenta to Kµ⌫ . Firstly the action contains no momentum conjugate to
Ktt since K̇tt does not appear in the Lagrangian. Then the canonical momentum conjugate to Kti and Kij are given
by,

⇡i = |K|Aittµ⌫�
(1) @[µK⌫]� , ⇡ij = |K|Atijµ⌫�

(1) @[µK⌫]� (28)

Rather than use these canonical momenta, we find it is convenient to instead use the simpler momentum variables,

Pi = @[tKi]t , Pij = @[tKi]j (29)

Π = Bαβγμνρ∂[αKβ]γ∂[μKν]ρ + mass and stress tensor terms

[ Kozuszek, de Rham, Tolley, TW ’23 ]



• Take massless(!) scalar field matter  and use this dynamical 
formalism to perform spherical collapse. Choose units so .


• Note: there is the dynamical spin-0 graviton mode 


• We send in a Gaussian shell of scalar field.

Φ
m = 1

[ Kozuszek, de Rham, Tolley, TW ’23 ]

Spherical collapse in minimal model

• Phenomenology may be bad for minimal model; but it is still a 
theory of gravity so what happens when matter collapses?



• For a weak pulse it disperses…

Spherical collapse in minimal model



• But for sufficiently strong initial data the evolution breaks down…

Spherical collapse in minimal model



• It appears that a singularity develops away from the origin; here 
seen in the metric determinant


• Seems not to be curvature singularity but we are not certain

Spherical collapse in minimal model



• Is this hidden behind a horizon? Apparently not as seen from 
outer expansion

Spherical collapse in minimal model

• If we reduce the graviton mass, strong coupling occurs sooner….




• Assume spherical symmetry (but time dependence)


• Require that  everywhere has the same signature as that of 
the Minkowski vacuum solution


• Then writing  we find;


• Means matter can’t be too non-relativistic or else one must have 
a singularity

Kμν

m2
1 = αm2 , m2

2 = βm2

[ Albertini, Kozuszek, TW ’24 ]
Spherical dynamics for m → 0

8πGρ
m2

>
3α2

8β ( ρ
P )

3 α + β = 1 , α, β > 0



Beyond spherical symmetry

• Spherical symmetry seems problematic … but it is non-generic. 
So what about beyond spherical symmetry?


• Note: exact cosmological symmetry is also not allowed!



• The previous 3+1 dynamical system in principle allows one to go 
beyond spherical symmetry.


• However it was thought that the theory was probably ill-posed — 
this is ok as it is an effective field theory.  

• It isn’t obvious that GR is well-posed  [ Choquet-Bruhat ’52 ]


• Ill-posedness could be cured by higher derivative operators cf. 
viscous relativistic hydro


• But it would be difficult to simulate.

Beyond spherical symmetry



• For minimal theory there is an elegant `harmonic’ formulation 
where vector constraint is removed:


• Recall vector constraint


• Evolve:


• Then:


• Ensuring  then ensures vector constraint holdsξμ , ·ξμ = 0

[ Kozuszek, TW ’24 ]
Well posedness of minimal theory

ξμ = − 2(K−1)αβ∂[μKα]β

∇2ξμ + R α
μ ξα = m2ημα(K−1)αβξβ



• Then for harmonic formulation of minimal theory we may write 
the system in first order form using the previous variables as;


• Define from this


• If matrix  is diagonalizable with real eigenvalues then well-
posed — `strongly hyperbolic’

M

Well posedness of minimal theory

[ see Papallo, Reall ’17 ]



• Analysing this matrix  we found:


• The linear theory about flat space is well-posed


• The non-linear theory near flat space is generically well-posed


• Analysis hinges on understanding degenerate eigenvalues


• Interestingly spin-2 graviton always controlled by inverse metric


• Spin 1 modes become birefringent

M

Well posedness of minimal theory



• Status of massive gravity is unclear; particularly in spherical 
symmetry where singularities appear to form generically.


• Can GR behaviour be recovered? It the dynamics well behaved?


• The only way to proceed is numerical, and explore non-
symmetric generic dynamics


• We now have a dynamical formulation which appears well-posed 
for the minimal theory


• Currently working to extend this to non-minimal case; and then 
the next steps are to implement 3+1 code

Summary



The End!



• Status of massive gravity is unclear; particularly in spherical 
symmetry where singularities appear to form generically.


• Can Vainshtein screening work?


• The only way to proceed is numerical, and explore non-
symmetric dynamics


• We now have a dynamical formulation which appears well-posed 
for the minimal theory


• Currently working to extend this to non-minimal case; and then 
the next steps are to implement 3+1 code

Extra slides



• Important for quantum stability of the theory. While the cut off is 
naturally given by , massive gravity naively becomes 
quantum mechanically strongly coupled at the much lower scale;


• However, this is computed for fluctuations about flat space. It is 
believed this scale is much higher expanding about a 
background where the Vainshtein mechanics is function. 

MPl

dRGT massive gravity

Λ3 = (Mplm2)1/3 ∼ (1000 km)−1



• Then for harmonic formulation of minimal theory we may write 
the system in first order form using the previous variables as;


• Define from this


• Then perturbing about a background


• Formal solution near 


• If matrix  is diagonalizable with real eigenvalues then;

x(0)

M

Well posedness of minimal theory

⟹

[ see Papallo, Reall ’17 ]


