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Plan for talk

* GGoal: understand whether ghost free massive gravity is a viable
theory of gravity — a computational problem!

 Massive gravity — linear and non-linear

* Spherical dynamics; numerical and analytic work shows
spherical symmetry is problematic

* Full numerical analysis to go beyond non-generic spherical case



Massive gravity

 Massive gravity in asymptotically flat 4d has a long history

* |nitially considered by Fierz + Pauli in linear theory — there is a
unigue ghost free mass term

 General mass term d.o.f. 2 — 6 with one a ghost

* For Fierz-Pauli mass no ghost (due to extra constraint), giving
2 (spin-2) + 2 (spin-1) + 1 (spin-0) d.o.f.

* The (Boulware-Deser) ghost generally returns at non-linear level

* Except for dRGT massive gravity which is ghost free non-linearly



Motivation

 Adding a mass is perhaps the most natural IR modification

 Cosmology provides an interesting motivation — perhaps a
cosmological mass can explain’ dark energy

 Clearly a mass would have to be small ~ 1073%V ~ few MPc,
but cosmological masses are still viable

* In particular GW170817 does not provide strong constraint



Linear massive gravity

* Linearizing about flat space we see the van Dam-Veltman-
Zakharov (vDVZ) discontinuity as m — 0

e ... but also see linear theory breaks down, the Vainshtein eftect

Juv = M + Iy h= _3m2T

Xp = 0Phpu — %auh
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dRGT massive gravity

« Key observation of dRGT is requirement of reference metric ]jw

 \What should this be? Here we will take it as MinkowskKi.

* Using this introduce symmetric vierbein;

guv = (f ) KapKpy



dRGT massive gravity

Next-to-Minimal mass term

« Using this we may write the theory as; /
1 1 1
q — /d4$\/§ (§R o §m%£(l) N §m§£(2) 4+ L(matter) [g]>
Minimal mass term Ly =2KF" —6
1 2 1 vV
Graviton mass 1% = m12 + m22 L2 = §(Kuu) - §KMVK w3

e This theory admits Minkowski vacuum solution

* There is one more mass term which we ignore here — it is
thought not to be compatible with phenomenology

G. Chkareuli,D. Pirtskhalava ’12; L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze, A. Tolley '13



dRGT massive gravity

* Yields massive Einstein equations;

B =Gu +miMy) +miM?) —T,, =0

M,zslv) — _K,ul/ =+ Kg,ul/ T Sg,ul/

1 . 3
Z (KaBK P — KQ) Juv — §g,uu

VH#

 The Bianchi identities imply;  ,_ Vv, =V (m?Mﬁ}) n meﬁ))

* This vector equation is only one-derivative, thus a constraint that
reduces 10 — 6 d.o.f.



Constraints

0=V, =V" (m%Mﬁ) + m%Mﬁ))
| et us rewrite out vector constraint as;

Eo = Kopn'V, =0

* Then it takes an elegant form; 0= &F = V“O‘ﬁgﬁ[QKﬁ]g

 Then we may construct the scalar constraint as;

IT = (m%g‘“’ + mgK‘“’) By V0 &

1
2
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dRGT massive gravity

 Phenomenology complicated — understanding how GR
behaviour is recovered requires detailed non-linear study

« Taking m — 0 we may imagine the solution being a GR solution
in some particular coordinates such that V,, = 0

e Called ‘Vainshtein mechanism’

 However must be highly ‘non-linear’



dRGT massive gravity

Object mass M

GR behaviour
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dRGT massive gravity

* Minimal theory does allow Vainshtein mechanism in spherical
symmetry [Renaux-Petel *14]

* Previous “state of the art” was that phenomenological
constraints imply that we need the non-minimal term and,;

2 2
my,my, > 0

 Then weak field analysis in static spherical symmetry argued that

Vainshtein mechanism works [Koyama, Niz, Tasinato *11; Berezhiani,
Chkareuli, Gabadadze 13 ]



Dynamics and 3+1 decomposition

| Kozuszek, de Rham, Tolley, TW ’23 ]

* |n our variables the action looks very nice;

x VO' 1 1
/’K’ <——A(1B)7“ [ Kﬂ]’y@[uKl/]O' B §m1£1 — §m§£2 ‘|‘ Ematter)

- We define momenta for K, and K;;; ; = 0Ky, Pij= 0Ky,

» Due to symmetry there is no 0,K,, term — and no momentum for K,

» Vector constraint - algebraic condition 0= VH¥P9,Kg



Dynamics and 3+1 decomposition

| Kozuszek, de Rham, Tolley, TW ’23 ]

e Now scalar constraint takes the form;

Il = B“ﬂ”’”p&[a[{myd[ K}, + mass and stress tensor terms

« This is algebraic in K,, when writing in terms of momenta P,, Pl-j

Py =0 Ky,  Pij = 0Ky,

« ADM like formulation; traceless part of Kl-j dynamical



Spherical collapse in minimal model

| Kozuszek, de Rham, Tolley, TW ’23 ]

 Phenomenology may be bad for minimal model; but it is still a
theory of gravity so what happens when matter collapses?

« Take massless(!) scalar field matter @ and use this dynamical
formalism to perform spherical collapse. Choose units so m = 1.

* Note: there is the dynamical spin-0 graviton mode

e We send in a Gaussian shell of scalar field.



Spherical collapse in minimal model

 For a weak pulse it disperses...




Spherical collapse in minimal model

e But for sufficiently strong initial data the evolution breaks down...




Spherical collapse in minimal model

* |t appears that a singularity develops away from the origin; here
seen in the metric determinant

 Seems not to be curvature singularity but we are not certain




Spherical collapse in minimal model

* |s this hidden behind a horizon”? Apparently not as seen from
outer expansion

 |f we reduce the graviton mass, strong coupling occurs sooner....



Spherical dynamics for m — 0O

[ Albertini, Kozuszek, TW 24 ]

* Assume spherical symmetry (but time dependence)

« Require that K;w everywhere has the same signature as that of
the Minkowski vacuum solution

« Then writing ml2 = am?, m22 = ﬂmz we find:
87er>3a2 o\° a+pf=1, a,f>0
m?2 8 \ P

e Means matter can’t be too non-relativistic or else one must have
a singularity



Beyond spherical symmetry

* Spherical symmetry seems problematic ... but it is non-generic.
So what about beyond spherical symmetry?

* Note: exact cosmological symmetry is also not allowed!



Beyond spherical symmetry

* The previous 3+1 dynamical system in principle allows one to go
beyond spherical symmetry.

 However it was thought that the theory was probably ill-posed —
this is ok as it is an effective field theory.

* |t isn’t obvious that GR is well-posed [ Choquet-Bruhat ’52 ]

* |ll-posedness could be cured by higher derivative operators cf.
viscous relativistic hydro

 But it would be difficult to simulate.



Well posedness of minimal theory

[ Kozuszek, TW '24 ]

* For minimal theory there is an elegant "harmonic’ formulation
where vector constraint is removed:

» Recall vector constraint &, = — 2(K~ )"0, K

e Evolve: &, =R —2V (&) +m? My, —87GNT, =0

» Then:  V2¢, +R2E, = m%, (K-,

« Ensuring & , fﬂ = 0 then ensures vector constraint holds



Well posedness of minimal theory

e Then for harmonic formulation of minimal theory we may write
the system in first order form using the previous variables as;

Alu] - (Oew) + P'[u] - (9su) + Clu] =0

e Define from this  M(k;) = —-A"'P'k;

 If matrix M is diagonalizable with real eigenvalues then well-
posed — strongly hyperbolic’

| see Papallo, Reall 17 ]



Well posedness of minimal theory

* Analysing this matrix M we found:
* The linear theory about flat space is well-posed

* The non-linear theory near flat space is generically well-posed

* Analysis hinges on understanding degenerate eigenvalues
* Interestingly spin-2 graviton always controlled by inverse metric

* Spin 1 modes become birefringent



Summary

e Status of massive gravity is unclear; particularly in spherical
symmetry where singularities appear to form generically.

 Can GR behaviour be recovered? It the dynamics well behaved?

* The only way to proceed is numerical, and explore non-
symmetric generic dynamics

 We now have a dynamical formulation which appears well-posed
for the minimal theory

* Currently working to extend this to non-minimal case; and then
the next steps are to implement 3+1 code



The End!



Extra slides

e Status of massive gravity is unclear; particularly in spherical
symmetry where singularities appear to form generically.

* Can Vainshtein screening work?

* The only way to proceed is numerical, and explore non-
symmetric dynamics

 We now have a dynamical formulation which appears well-posed
for the minimal theory

* Currently working to extend this to non-minimal case; and then
the next steps are to implement 3+1 code



dRGT massive gravity

e Important for quantum stability of the theory. While the cut off is

naturally given by Mp;, massive gravity naively becomes
quantum mechanically strongly coupled at the much lower scale;

Ay = (M m»"3 ~ (1000 km) ™

 However, this is computed for fluctuations about flat space. It is
believed this scale is much higher expanding about a
background where the Vainshtein mechanics is function.



Well posedness of minimal theory

e Then for harmonic formulation of minimal theory we may write
the system in first order form using the previous variables as;

Alu] - (Bsu) + P'[u] - (Biw) + Clu] = 0
[ see Papallo, Reall ’17 |

* Define from this M(k;)) = —A""P'k;

« Then perturbing about a background u = u + €du
» Formal solution near x

Su(t,z*) = /dge_iki(mi_x§0>) exp(iM (k;)(t —to)) - v(k:)

 If matrix M is diagonalizable with real eigenvalues then;

lexp(M (ki) (t —to)|| < f(t—to)  ==>  lldull (t) = £t — to) |5ull (to)



