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Tidal Deformations of Black Holes

Outline

1) Motivation
2) Review: Static Love Numbers for Black Holes (BHs)

3) Dynamical Tidal Coefficients for BHs

“Dynamical Tidal Love Numbers for Kerr Black Holes” by Malcolm Perry and M.J.R. arXiv: 2310.03660 [gr-qc]
“New structures of Love Numbers for Kerr Black Holes” by Malcolm Perry and M.J.R. [to appear]
”TBA” Glazer, Joyce, MJR, Santoni, Solomon, Temoche arxiv [to appear]
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Tidal deformations are a gravitational phenomenon that causes a body to stretch along
the line pointing towards and away from the center of mass of another compact object.

Tidal Bulge
in Ocean

This is a result of spatial variations in the gravitational field exerted on one body by
another, that is not constant across its parts.
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Tidal Squeezing in the Solar System

Figure 1: Jupiter-lo tidal interaction.

Jupiter
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Tidal Squeezing in Exoplanets

CHEOPS REVEALS A RUGBY BALL-SHAPED EXOPLANET

ESA's exoplanet mission Cheops has revealed that an exoplanet orbiting its host star within a day has a
deformed shape more hike that of a rugby ball than a sphere. This is the first time that the deformation of an
exoplanet has been detected, offering new insights into the internal structure of these star-hugging planets.
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, ) Internal structure
Cheops spotted a small difference in Likely very similar to

the typical transit light curve, caused that of Jupiter
by the deformation of the planet
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Galactic Tidal Deformations

Hubble Space Telescope

Seyfert galaxy NGC 169 (bottom) and the galaxy IC 1559 (top)
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Significance: compact objects with distinct internal compositions undergo distinct deformations.

Tidal squeezing in the farm.
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Black Holes
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Tidal Deformation of Black Holes

Fundamental Idea:

Black Holes are nothing, simply boundaries of

Space=time:

Can we tidally squeeze BHs? How are tidal deformations for BHs characterized?

Can we explain universal features of tidal deformations of black holes? What can we learn from BH tidal deformations?
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Tidal deformations are a gravitational phenomenon that causes a body to stretch along
the line pointing towards and away from the center of mass of another compact object.

Figure I: Jupiter-lo tidal interaction.

CHEOPS REVEALS A RUGBY BALL-SHAPED EXOPLANET

Tidal Squeezing in the Solar Systrfal Squeezing beyond the Solar Systesm ctic Tidal Deformations
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FIG. 8. Event horizon generator surfaces for the equal mass head-on binary. The £ slicing in the top row is almost identical to

| Bohn, Kidder Teukolsky

FIG. 1. Event horizon with a toroidal topology, shown in a
different time slicing than the one used in the SPEC simulation.

Bohn, Kidder Teukolsky
Tidal Squeezing in Head-on Black Hole Collisions

Tidal Squeezing in Binary Black Hole Mergers
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Significance: compact objects with distinct internal compositions undergo distinct deformations.

4504070 4644082  ABMAC3  46ALI05 444116

Binary Black Holes

FIG. 1. Event horizon with a toroidal topology, shown in a
different time slicing than the one used in the SPEC simulation.

Therefore, the extent of the tidal deformation should be
discernible in the gravitational wave and in turn be intricately linked to the inner structure of the entity.

GW: The manifestation of tidal deformation in a body, k€m,

becomes evident at the 5PN order in the phase of a binary The internal structure of certain objects is governed
waveform. On the other hand, the onset of tidal dissipationin a by the poorly understood nuclear matter in e.g. NS
rotating body, encoded in v€m, is observed for the first time at and new unexpected effects in black holes.

the 2.5PN order for Kerr and 4PN order for Schwarzschild.
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Tidal deformations in General Relativity (GR)

An important observation is that the tidal response coefficients, first identified by Love, k;,, can
be extracted directly from the solutions of the wave equation for all fields (integer spin fields):

CO = Compact Object such
as another BH or NS

b = —? (€_2 Z Z 1/ﬁmgx‘i’?‘:ft

=2 m=—¢

r —20—1
1 + k.’im () ] ’
Ts

Gravitational
external potential

r/rs the dimensionless distance to the body
E,,, multipole moment
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Tidal Deformations in GR
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The problem of tidal deformations of Kerr BHs

1
d=—=
‘ 2

Reduces to solving the massless scalar wave-equation equation Vd. — 0 s = 0.4+1. 49
s ’ _ ) ) )

D (t,r,0,0) = e “ MR (r)S,(#), with weC and meEZ.

Boundary conditions. The radial functions must meet the following ingoing boundary
conditions at the horizon

R.(r) = const x (r —r,) "  with a, > 0 .

(r) = const x (r —r4) with a4 as T T4 O = a/(2Mr+)

where we defined the coefficient T, =(ryo—r_)/(87Mry).

o, = W=m) s re =M+ VMZ— a2,
_471' T+ 2
Analytic Continuation . r\
yt RS(T) — C~1 ,,,e (]— + (_) kﬂm ]

T—00 T

Tidal (Love) Coefficients
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Kerr black
hol

Characterized by
mass M and spin parameter a

Tidally Deformed
Kerr BHs

Characterized by
mass M and spin parameter a
and perturbations h ,
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Love Numbers for Kerr Black Holes (BHSs)
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Tidal deformations of BHs

Static tidal Love numbers , k;, =0 for static gravitational
deformations (w = 0)

Satellitemmm— «—mmstilloise

BH BH

Dynamical tidal Love numbers , k,,/~ 0 for dynamical
gravitational deformations (w ~ 0)

Satellitemmm— «——msiilloise

BH BH
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An important observation is that the tidal response coefficients, first identified by Love, k,, can
be extracted directly from the solutions of the wave equation for all fields (integer spin fields) to
all orders in the frequency, including static (w = 0) and dynamical (w ~ 0) responses.

The gravitational tidal coefficients, km, describe the tidal response of a rigid object e.g. star, planet or
black hole.

kem(w) = Kem(w) + @ Vem(w) .

T ﬁ
Conservative effects Dissipative effects
or Love numbers
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Static Love Numbers for Kerr BHs

Kerr BH static tidal deformation coefficients defined‘by ,
A - —(1+42¢)
RS(T’) — 1 ?"E (1 + (_) kﬂm) )
r—00 Ts

kem(w = 0) = kgm(w = 0) + i vgm(w = 0)
where

Static Love Numbers #em(@ =0) = 0,

£ (142¢)
Static Dissipation Coeff. vim(w =0) = (=1)"""'my 20+ 1)20)! Li(” + 4m*y7) T

Love Number vanishes, dissipation does not.
Is this a realization of something more fundamental?
Yes: symmetries. In that case we could observe it in the GW data.
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Hidden symmerties for vanishing Love numbers for Kerr BHs

Dynamical Tidal Coefficients from
SL(2,R) x U(1) =P Love Symmetry Starobinsky symmetry
arXiv:2209.02091 [hep-th]

peir _ D=2 = L1 +¢— )1 + £+ 2iQ) (m - r_)“”f)
fm T T2+ 1)T(—€ — s)T(—£ +2iQ) retr
S0(4,2) =) Starobisnky Symmetry 7
arXiv:2203.08832 [hep-th] Q=Q-Muw

. _ P=2v-1)I(1+v—s—2Mw)T(1+v+2Q) Ty —T_
Low frequency solutions hine) = S S ot ("= )

Mano and E. Takasugi arXiv:gr-qc/9603020 [gr-qc]
Dubowsky et al arXiv:2209.02091 [hep-th].

o\ 12D
X (1+ Apm w) (:_l_r_) +0(?)
+ —

where

Q=—2 (Mw—r.m0),

Ty —T-
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The vanishing of black hole Love numbers became however a controversial topic.

Potential uncertainties in the tidal coefficient arising from this Newtonian/GR matching could be
effectively addressed by utilizing analytic continuations of the GR solutions into higher dimensions.

A different strategy to address these uncertainties involves utilizing the framework defined
within the point-particle effective field theory (EFT) for binary inspirals.
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Dynamical Tidal deformations of BHs

BH  — e BH
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One possibility to compute the Love numbers for Kerr is to work in a regime where

wM < 1, wr L 1.

Such that the scalar/ Teukolsky’s equation becomes

SL(2,R) x SL(2,R) (2Mwry — s(ry —r_) — am)2 (2Mwr_ + Ls(ry —r_) — am)2 P
Hidden Symmetry [&A@r - (r—ry)(re—r-) B r—r_)(rs —r_) — Ky s|Rs = 0(4.2)
1 : (m + scos 0)? B
[sin989 (SlIl 939) — ey -+ Kg,s] 53(6') =0.

Spheroidal eigenvalues

Kis=({—-s){+s+1)+s.
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Teukolsky’s radial equation

i 2 i 2
SL(2,R) x SL(2,R) .08, + (2Mwry — is(ry —r_) —am) B (2Mwr_ + ts(ry —r_) —am) Rl B =0(42)

Hidden Symmetry (r=ri)(re —r-) (r—r)(rs —r-)
1) Coordinate transformation and field redefintion
e=—t, R =(—r ) —r)tu(r),
po BT ) () g g HMrommd)
2) Identifying a=1—|—€—z’r 4?; (Mw —rymQ), b=1+/¢—2iMw—s,
c=1—z'r4MiT: (w—mQ) —s.
v T
d*w dw
2(1—2) =—+c—(a+b+1)2| — —abw =
(1-2) 5+~ )4
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d*w dw SL(2,R) x SL(2,R)
Teukolsky’s radial equatio — - — — - — ’ ’
ukolsky’s radial equati z(1—2) 12 +lce—(a+b+1)2 . abw =0 Hidden Symmetry
The solution takes the form
Ri(z2) = (1—2)P2%(c1F[a,b,¢2]+coz'“Fla—c+1,b—c+1,2—¢;z]),

Boundary Conditions

Ingoing b.c.
on the BH horizon Analitycal continuation

= oo

Fla+b—k)

i 2Mrt (w—mf2)—s/2 R 51 T
A _ —— ' T (a— K)I'(b— Kk
B (’" *"+) * (r—r_) 1t (4.10) e (a—k)0(6— k)
r—r_
AIM(Mw — Q) 4M -
F(l—l—é—i (M =rem), 4y bt — 5,1 — i M (o mg) — s ”).
Ty —T— Ty —T_— r—1r_ M
a=1+0—1% (Mw —rymQ), b=1+¢—2iMw—s,
rye —7T-
c:l—i%(w—mﬂ)—s.
ry —7T_

Generic dimensionless tidal coefficient

['(a)['(b) ry —1T_
Fim (W) = T'(k+1)T(a—k)L(b — k) log ( r ) |
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Tidal coefficients for dynamical external gravitational sources

(1+£—z' M (Mw—r+mQ)) T(1+£— 2iMw — s)

kgm (Cu’) =

(20 + 1)IT(20 + 1)T (—2 e 7‘+mQ)) [(—f — 2iMw — 5)
T T L) T
(f5e) =(E) (
ﬁ ( 16 M?*(Mw — T+mQ)2)]

AMi(Mw — r:mQ)(2iMw + 3)

26+ 1)IT20+1) (ry —r) |11 (r —r_)
£ =T (1+42¢) r
X [H(n + (2Mw — is)?) ( n _) log (T ) :
1 T4 T_ + —T-
v=a/(ry—7-).
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Kerr Dynamical Tidal Coefficients

(n) () my (T+—T e
ha) = R " = 3w i) ()

n=1
lg( +_r_)2Mi
T

) }i[l(n2 +4m?y?)

whese=thg first few orders yield

(=)t (I + ) T(1+1—s)T (141 +2miv)
2L+ 1)IT2+1)T (=1 4 2mivy)

(=1l +9)! (1 —s) T —T_
T _Rl+ D)) 4Mm71°g( r

= v 4Mlog (r_,_ — r_)
r

4iM: (U=l +2im) = Y(1+ 1+ 2im)),

1 : 2myy
) (2mfy P22 Gy (nZ))
v@ = KUOMWA+1+5) — (1 +1—5))

25—1
1

M on .
& nz_;n+€+1—s

* Dynamical Love numbers for Kerr are
generically not zero at all orders in the
frequency w and exhibit logarithmic running,

*No frequency-dependent dissipation in Kerr by
scalar perturbations (s = 0)

* Kerr black holes do not universally behave
like rigidly rotating dissipative spheres

* Agreement with low frenquency results
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Tidal Coefficients for mor general D=4 BHs

LT

r (l—l—f—z' M (pf, —T_,_mQ)) T(14£— 2iMw — s)
kgm(w) =

(20+1)! @0+ )T (—€ — i 2 (Mw — r,mQ) ) T(—€ — 2iMw — s)

¢
X (“"”‘)(Hz)log (TJF_T_) (¢
T+ +7-— r

Kerr-NUT black holes

ry > 5N = M+ VM2 + N2 — a2,

Kerr-MOG black hole of the Scalar Tensor Vector Gravity (STVG),

ry = r¥9C = r(1 4+ a) £ v/ M2(1 4+ 0) — a2,
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Tidal Coefficients for Extremal Kerr Bhs
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Tidal Coefficients for Extremal Kerr Bhs

2 Static Love numbers for Extremal Kerr

We aim to find the static Love numbers in extremal Kerr. For the polar angle dependence

1 , (m + scos 6)? -
[m&; (sin 60y) — 20 + KE’S] Ss(6)=0. (2.1)
The corresponding eigenvalues
Kis=f—-—8)l+s+1)+s (2.2)

The radial equation is now

[67- ((T B M)zar) e
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Tidal Coefficients for Extremal Kerr Bhs

For s=0 we can reduce the radial equation to a spheroidal Bessel equation

Special case s =0

One can make the following coordinate transformation
M Y Plugging the expressions of the solution (2.11) in R we can determine the behavior of
A P — 0 =——— 0 the solutions on the black hole horizon r —
(mM), ) (mM)2Z he sol he black hole h M
r— r—
- 2 imM _ imM_
to bring the equation to a Bessel spherical differential equation Roo = \/; [cl et (14 ) +epe 0 (1+ )] (2.12)
d*R,_ .
2 5=0 2 _
et (22 —4({+1)Rs—o =0
Solutions are of the form in the asymptotic region r — oo. The behavior of the solutions yields
~ 2 (1) (2) RSZO — Gort (1 + ko r 2 4 ) .
Rs—o = z\/; (cl hy'(z) +cahy (z)) :
We can define the tidal coefficient
. . ; M)2e+1
V() = \/E Ji(2) +iyL (= ko = — i (m .
14 ( ) 2z ( 2+£( ) 2+€( )) Y4 2(2£+1)P (% —|—.€)F (% +£)

T

0 (33562 — iy31a(2) -

z
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Tidal Coefficients for Higher Dimensional Bhs

Black Hole

D dimensions

-+

BH——>
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Static Tidal Coefficients for D=5 BHs, Black Rings and Black Strings

ac Rit

C’wi’eo&ufe
DA _ ) 9{3
npe “‘)\PJR ~ '
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Contributions

— Reviewed how tidal deformations for BHs are defined in General Relativity

— Offered steps toward a better understanding of the computation of
static Love numbers, and discussed the vanishing controversies for BHs

-

— Determined the dynamical tidal coefficients for Kerr through the study of the tidal deformations

of Kerr BHs in dynamical external fields

— Argued that the Love numbers for Kerr have an approximate SL(2,R) x SL(2,R) hidden symmetry

and match both, the low frequency regimes and Post-Newtonian computations.

Tidal squeezing in the farm.
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Tidal Coefficients for Higher Dimensional BH

Myers-Perry D=5 BH Love Numbers are non-vanishing

Re[ )\MP]
L j T T T T T
L]
: . s 0 :
0.10 . s
I . . J
0.05 L A f ] Figure 2: Visualization of the response coefficients A).¥" for the single spinning 5D Myers—Perry black
- a . ] holes (3.35) as a function of the multipole moments £. The imaginary part of the coefficients vanish,

leading to vanishing dissipative response coefficients. The Love numbers, defined as the real part of

Lo ] I\ B ~ ]
0.00 — U A ¥ Y 2N y: B O "\\./A o7 ~el £ the A} are represented in the plot for fixed mass M = 1 and angular momenta J/M3/? = 0.26,0.29
! \\ ;j \VJ b/ o e 1 (from gray to black curves), respectively below and above the critical value (J/M3/?)qit ~ 0.286. As
_0.05L® ‘ 1 the multipole moments increase the Myers-Perry black holes with J/M3/2 > (J/M?®/?)qi; exhibit
I \ ] increasing values of the Love numbers. This behavior reverts for slowly rotating Myers—Perry black
I * . i holes where the tidal distortion tends to zero as £ — oc.
-0.10} ¢ . .
- . B
L . i
L Y J
R 1] S L A R
5 10 15 20

Myers-Perry BHs (= Kerr in D>4 space-time dimensions) ?
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Schwarzschild Dynamical Tidal Coefficients

Q—0,ry >2M and r_ — 0
(142 —s—2iMw)[(1+£—2iMw) Lo [(2M
26+ DIT(2¢4+1)T (—E—S—ZiMw) (—€ —2iMw) og( )

(2tMw s — 4AM*w?) 252) ‘
(2¢ + 1)1 T( 2£+1) H(J +AMw ] [H(” + (2Mw —is) )] log (ZM)

n=1

kgSChw (w) — (4.27)

T

. (€ —2)1(6 — 1)1 1€ +2)! oM .
G ){_ 2(1+20)1(2¢ — 1)! }“ 1°g( r )+0(°")'
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Why 2 bulges?
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