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Our EMRI waveform models must be 
accurate, efficient and extensive
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Modelling goals



Our EMRI waveform models must be 
accurate, efficient and extensive

We need the phase error in the 
waveform to be ‘small’  we 

must include adiabatic and post-
adiabatic corrections

⟹
EMRIs will be very generic  our 

models must span the full 
parameter space of eccentric, 

precessing systems

⟹

Search and parameter estimation 
requires millions of templates 
each waveform must be computed 

in less than 1 second

⟹
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m1

m2

• 


• Small body perturbs spacetime: 
 




• Perturbation affects ’s motion:  
 

ϵ = 1/q = m2/m1 ≪ 1

gαβ = gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ + …

m2

D2zμ

dτ2 = ϵfμ
(1) + ϵ2fμ

(2) + …

Gravitational self-force approach

[Image credit: Adam Pound]

Niels Warburton Waveform modelling for EMRIs



Zeroth order: geodesics in Kerr

• constants  
- Energy  
- angular momentum  
- Carter constant 


• phases  with 
frequencies   

JA = (m1, χ1, E, Lz, Q)
E

Lz
Q

φA = (φr, φθ, φϕ)
ΩA(JB)

• Simple ODEs:

dφA

dt
= ΩA(JB)

dJA

dt
= 0

[Image created using the BHPToolkit KerrGeodesics package]
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Post-adiabatic (multi-scale) expansion

• evolution due to the self-force:
dφ̃A

dt
= ΩA(J̃B)

dJ̃A

dt
= ϵ [F(0)

A (J̃B) + ϵF(1)
A (J̃B) + $(ϵ2)]

• waveform:

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

• Secondary spin: (i) new slow parameters 
                           (ii) new precession phase

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant
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Accuracy and post-adiabatic counting

φ̃A = ϵ−1φ(0)
A (ΩB) + ϵ0φ(1)

A (ΩB) + $(ϵ)phases:
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Accuracy and post-adiabatic counting

0PA is sufficient for detection 
and rough parameter estimation 
for astrophysics of EMRIs of 
bright sources

From the orbit averaged piece 
of first-order self-force ⟨ f α

(1)⟩

        can be related to the 
fluxes, thus avoiding a local 
calculation of the self-force

⟨ f α
(1)⟩

Adiabatic (0PA) 

φ̃A = ϵ−1φ(0)
A (ΩB) + ϵ0φ(1)

A (ΩB) + $(ϵ)phases:
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Accuracy and post-adiabatic counting

0PA is sufficient for detection 
and rough parameter estimation 
for astrophysics of EMRIs of 
bright sources

From the orbit averaged piece 
of first-order self-force ⟨ f α

(1)⟩

        can be related to the 
fluxes, thus avoiding a local 
calculation of the self-force

⟨ f α
(1)⟩

Adiabatic (0PA) 

Needed for precision tests of GR
Potential application to IMRIs

Two contributions: 
• oscillatory pieces of the first 

order self-force  
• second-order orbit averaged 

self-force 

f̆ α
(1)

⟨ f α
(2)⟩

Needed to extract all sources

Post-adiabatic order (1PA)

φ̃A = ϵ−1φ(0)
A (ΩB) + ϵ0φ(1)

A (ΩB) + $(ϵ)phases:



Post-adiabatic (multi-scale) expansion

h(n)
αβ = ∑kA h(n,kA)

αβ (J̃A; xi)e−ikAφ̃A xi = {r, θ, ϕ}

• Write metric as product of slowly evolving amplitudes and a 
rapidly evolving phase:

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant
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Post-adiabatic (multi-scale) expansion

h(n)
αβ = ∑kA h(n,kA)

αβ (J̃A; xi)e−ikAφ̃A xi = {r, θ, ϕ}

• Write metric as product of slowly evolving amplitudes and a 
rapidly evolving phase:

∂t = ∑A
·̃φA∂φ̃A

+ ·̃
JA∂JA

= ∑A ΩA∂φ̃A
+ ϵF(0)

A ∂JA
+ $(ϵ)2

• Substitute this into the Einstein field equations. By treating  as a 
function of  time derivatives can be computed via:

t
(J̃A, φ̃B)

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant
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Post-adiabatic (multi-scale) expansion

h(n)
αβ = ∑kA h(n,kA)

αβ (J̃A; xi)e−ikAφ̃A xi = {r, θ, ϕ}

• Write metric as product of slowly evolving amplitudes and a 
rapidly evolving phase:

∂t = ∑A
·̃φA∂φ̃A

+ ·̃
JA∂JA

= ∑A ΩA∂φ̃A
+ ϵF(0)

A ∂JA
+ $(ϵ)2

• Substitute this into the Einstein field equations. By treating  as a 
function of  time derivatives can be computed via:

t
(J̃A, φ̃B)

• Lots of extra detail… (gauge choice, regularisation via matched 
expansions, numerical methods, etc). The first calculation of  took 
~10 years to work through all the details.

h(2)
αβ

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant
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Near-identity averaging transformations

dJ̃A

dt
= ϵ [F(0)

A (J̃B) + ϵF(1)
A (J̃B) + $(ϵ2)]• What are those  variables?J̃A

Lynch, van de Meent, 
NW, Witzany
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Near-identity averaging transformations

dJA

dt
= ϵ [F(0)

A (JB, φC) + ϵF(1)
A (JB, φC) + $(ϵ2)]

• Evolution of  depends on phases :JA φC

dJ̃A

dt
= ϵ [F(0)

A (J̃B) + ϵF(1)
A (J̃B) + $(ϵ2)]• What are those  variables?J̃A

Lynch, van de Meent, 
NW, Witzany
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Near-identity averaging transformations

dJA

dt
= ϵ [F(0)

A (JB, φC) + ϵF(1)
A (JB, φC) + $(ϵ2)]

• Evolution of  depends on phases :JA φC

J̃A = JA + ϵY(1)
A (JB, φC) + ϵ2Y(2)

A (JB, φC) + $(ϵ3)

• Introduce a near-identity (averaging) transformation (NIT):

• Can choose  to remove dependency on the phase in the 
equations for 

Y(n)
A
J̃A

dJ̃A

dt
= ϵ [F(0)

A (J̃B) + ϵF(1)
A (J̃B) + $(ϵ2)]• What are those  variables?J̃A

Lynch, van de Meent, 
NW, Witzany
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Near-identity averaging transformations

Phase space trajectory computation goes from taking hours to 
to taking milliseconds

Lynch, van de Meent, 
NW, Witzany
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p = 2rmaxrmin
rmax + rmin

e = rmax − rmin
rmax + rmin



Native rapid waveform generation

• solve field equations for amplitudes  and forcing functions 
 on a grid of  values

h(n)
lmki

F(n−1)
A J̃A

Offline step

• solve ODEs for  and 


• Add up the mode amplitudes  at each sample time

• FastEMRIWaveforms (FEW) software package can compute a 

2-year long waveform in  - ms

φ̃A J̃A
h(n)

ℓmki

∼ 10 100

Online step
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Offline calculations: field equations

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ

Niels Warburton Waveform modelling for EMRIs

• Expand and use multiscale expansion to get:



Offline calculations: field equations

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ
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• Expand and use multiscale expansion to get:

• The effective source, , is non-compact due to contributions 
from  and its parametric derivative 

Seff
h(1) ∂JA

h(1)



Offline calculations: field equations

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ
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• Expand and use multiscale expansion to get:

• The effective source, , is non-compact due to contributions 
from  and its parametric derivative 

Seff
h(1) ∂JA

h(1)

•  also contains terms that regularise the metric perturbation 
(derived through a rigorous matched asymptotic expansion 
procedure)

Seff



Offline calculations: field equations

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ
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• Expand and use multiscale expansion to get:

• The effective source, , is non-compact due to contributions 
from  and its parametric derivative 

Seff
h(1) ∂JA

h(1)

•  also contains terms that regularise the metric perturbation 
(derived through a rigorous matched asymptotic expansion 
procedure)

Seff

h(n)
αβ = ∑kA h(n,kA)

αβ (J̃A; xi)e−ikAφ̃A• Solve for: xi = {r, θ, ϕ}



Offline calculations: computational burden
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δGαβ[h(1)] = T(1)

δGαβ[h(2)] = Seff(h(1), ∂JA
h(1); xi)



Offline calculations: computational burden
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δGαβ[h(1)] = T(1)

δGαβ[h(2)] = Seff(h(1), ∂JA
h(1); xi)

• Vast majority of the computation time is spent computing the effective 
source, Seff
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δGαβ[h(1)] = T(1)

δGαβ[h(2)] = Seff(h(1), ∂JA
h(1); xi)

• Vast majority of the computation time is spent computing the effective 
source, Seff

• For a single circular orbit around a Schwarzschild black hole the 
computation time is ~500 CPU hours
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δGαβ[h(1)] = T(1)

δGαβ[h(2)] = Seff(h(1), ∂JA
h(1); xi)

• Vast majority of the computation time is spent computing the effective 
source, Seff

• For a single circular orbit around a Schwarzschild black hole the 
computation time is ~500 CPU hours

• To compute an inspiral we need ~20 orbits computed in the offline 
step so we can accurately interpolate the forcing functions and 
asymptotic metric amplitudes. This gives ~10,000 CPU hours



Offline calculations: computational burden
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δGαβ[h(1)] = T(1)

δGαβ[h(2)] = Seff(h(1), ∂JA
h(1); xi)

• Vast majority of the computation time is spent computing the effective 
source, Seff

• For a single circular orbit around a Schwarzschild black hole the 
computation time is ~500 CPU hours

• To compute an inspiral we need ~20 orbits computed in the offline 
step so we can accurately interpolate the forcing functions and 
asymptotic metric amplitudes. This gives ~10,000 CPU hours

• This is of the order of magnitude of a numerical relativity simulation 
(but we only need to carry out the calculation once for all mass ratios)



Offline calculations: future computational burden
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• For generic (eccentric, precessing) orbits we need to compute 
hundreds more modes per orbit

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)
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• For generic (eccentric, precessing) orbits we need to compute 
hundreds more modes per orbit

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

• For generic orbits we need cover a 4D parameter space (black hole 
spin, semi-latus rectum, eccentricity, inclination)

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)



Offline calculations: future computational burden

Niels Warburton Waveform modelling for EMRIs

• For generic (eccentric, precessing) orbits we need to compute 
hundreds more modes per orbit

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

• For generic orbits we need cover a 4D parameter space (black hole 
spin, semi-latus rectum, eccentricity, inclination)

• Naive calculation of the required resources: 500 CPU hours  
8 billion CPU hours

× 100
× 20 × 20 × 20 × 20 =

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)



Offline calculations: future computational burden
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• For generic (eccentric, precessing) orbits we need to compute 
hundreds more modes per orbit

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

• For generic orbits we need cover a 4D parameter space (black hole 
spin, semi-latus rectum, eccentricity, inclination)

• Naive calculation of the required resources: 500 CPU hours  
8 billion CPU hours

× 100
× 20 × 20 × 20 × 20 =

• New techniques needed! e.g., better numerics, reduce need for 
parameter space coverage by using analytic results (PN/PM)

δG[0]
αβ [h(1)] = T(1)

αβ

δG[0]
αβ [h(2)R] = Seff(h(1), ∂JA

h(1); xi)



Online step: FastEMRIWaveforms (FEW)

• The number of  that need to be summed at each time step can 
be in the thousands.

h(n)
ℓmki

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

Chapman-Bird, Katz, Chua, 
Speri, Hughes, NW
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Online step: FastEMRIWaveforms (FEW)

• The number of  that need to be summed at each time step can 
be in the thousands.

h(n)
ℓmki

• The waveform amplitudes vary slowly. These amplitudes are sampled 
on a sparse set of points, summed, and then upsampled

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

Chapman-Bird, Katz, Chua, 
Speri, Hughes, NW
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Online step: FastEMRIWaveforms (FEW)

• The number of  that need to be summed at each time step can 
be in the thousands.

h(n)
ℓmki

• The waveform amplitudes vary slowly. These amplitudes are sampled 
on a sparse set of points, summed, and then upsampled

• GPU acceleration takes 
generation time down from 
minutes to milliseconds

• Relativistic adiabatic (0PA) 
Kerr equatorial model will be 
publicly available soon

hℓm = ∑
ki

[ϵh(1)
ℓmki(J̃A) + ϵ2h(2)

ℓmki(J̃A) + $(ϵ3)] e−i(mφ̃ϕ+kiφ̃i)

Chapman-Bird, Katz, Chua, 
Speri, Hughes, NW
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Parameter space coverage at 0PA

• generic orbits in Kerr: 
5.5PN-  approximation


• equatorial orbits in Kerr: 
full relativistic waveforms in 
time or frequency domain


• kludge models

e10

In FEW:

Isoyama et al. 
FEW developers



Complete 1PA inspiral waveforms

Comparison with NR waveform from SXS collaboration

• Complete quasi-circular 1PA inspiral model with generic 
(precessing) secondary spin, linear-in-  primary spin and 
evolving  and 


• Implementation in FEW will be public soon

ϵ
m1 χ1

Pound, NW, Wardell, 
Durkan, Miller, Mathews
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Conclusions

• Using the post-adiabatic (multiscale) 
expansion we can compute  and h(1)

αβ h(2)
αβ

• There is a native, fast waveform generation 
scheme, which when combined with FEW gives 
EMRI waveforms in 10s of milliseconds

• Post-adiabatic waveforms agree very remarkably 
with NR waveforms even for . This suggests 
we can model IMRIs with 1PA waveforms.

q ≃ 10

• Once offline step is complete (huge task) the online waveform 
generation time is roughly the same for all orbital configurations

[Movie credit: Philip Lynch]
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Adding more physics

dφ̃A

dt
= ΩA(J̃B)

dJ̃A

dt
= ϵ [F(0)

A (J̃B) + ϵF(1)
A (J̃B) + $(ϵ2)]+κF(κ)

A (J̃B)

• So long as your extra physics acts on a longtime scale (or can be 
NIT’ed), the equations of motion become:

• Examples include: 
- accretion disks 
- third-body perturber (adds new resonances) 
- beyond-GR physics

• Once you have , the multiscale framework and the 
modular construction of FEW means you can generate 
waveforms quickly

F(κ)
A (J̃B)

Niels Warburton Waveform modelling for EMRIs
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Offline calculations: solving for h(n)
αβ

• To solve for the metric perturbations we are 
moving to a hyperboloidal, compactified 
framework


• Solve for the metric perturbation using 
spectral methods


• Significant improvement over the variations 
of parameter approach used previously

Credit: Ben Leather, arXiv:2411.14976



Post-adiabatic (multi-scale) expansion Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant

Niels Warburton 4.5PN vs 2SF

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ



Post-adiabatic (multi-scale) expansion Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant

Niels Warburton 4.5PN vs 2SF

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ

Tαβ = ϵT(1)
αβ + ϵ2T(2)

αβ + $(ϵ3),

Gαβ[g] = ϵδGαβ[h(1)] + ϵ2 [δGαβ[h(2)] + δ2Gαβ[h(1), h(1)]] + $(ϵ3),

• Expand the Einstein and stress-energy tensors as



Post-adiabatic (multi-scale) expansion

h(n)
αβ = ∑m h(n,m)

αβ (Ω; xi)e−imφp xi = {r, θ, ϕ}

• Write metric as product of slowly evolving amplitudes and a 
rapidly evolving phase:

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant

Niels Warburton 4.5PN vs 2SF

Gαβ[gKerr
αβ + ϵh(1)

αβ + ϵ2h(2)
αβ ] = 8πTαβ

Tαβ = ϵT(1)
αβ + ϵ2T(2)

αβ + $(ϵ3),

Gαβ[g] = ϵδGαβ[h(1)] + ϵ2 [δGαβ[h(2)] + δ2Gαβ[h(1), h(1)]] + $(ϵ3),

• Expand the Einstein and stress-energy tensors as



Post-adiabatic (multi-scale) expansion Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant

Niels Warburton 4.5PN vs 2SF

ϵδGαβ[h(1)] + ϵ2 [δGαβ[h(2)] + δ2Gαβ[h(1), h(1)]] = ϵT(1)
αβ + ϵ2T(2)

αβ



Post-adiabatic (multi-scale) expansion

∂t = ·φp∂φp
+ ·Ω∂Ω = Ω∂φp

+ ϵF(0)(Ω)∂Ω + $(ϵ2)

• Substitute multiscale expansion into the Einstein field equations. By 
treating  as a function of  time derivatives can be computed 
via:

t (Ω, φp)

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant

Niels Warburton 4.5PN vs 2SF

ϵδGαβ[h(1)] + ϵ2 [δGαβ[h(2)] + δ2Gαβ[h(1), h(1)]] = ϵT(1)
αβ + ϵ2T(2)

αβ



Post-adiabatic (multi-scale) expansion

∂t = ·φp∂φp
+ ·Ω∂Ω = Ω∂φp

+ ϵF(0)(Ω)∂Ω + $(ϵ2)

• Substitute multiscale expansion into the Einstein field equations. By 
treating  as a function of  time derivatives can be computed 
via:

t (Ω, φp)

Hinderer, Flanagan, Miller, 
Pound, Moxon, Grant
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ϵδGαβ[h(1)] + ϵ2 [δGαβ[h(2)] + δ2Gαβ[h(1), h(1)]] = ϵT(1)
αβ + ϵ2T(2)

αβ

δGαβ = δG[0]
αβ + ϵδG[1]

αβ + $(ϵ2)

• Expand the linearised and second-order Einstein tensors as

δ2Gαβ = δ2G[0]
αβ + $(ϵ)



Field equations

Niels Warburton 4.5PN vs 2SF

δG[0]
αβ [h(2)] = T(2)

αβ − δ2G[0]
αβ [h(1), h(1)] − δG[1]

αβ [h(1)]

δG[0]
αβ [h(1)] = T(1)

αβ

• Field equations for each m-mode take the form:



Field equations

Niels Warburton 4.5PN vs 2SF

δG[0]
αβ [h(2)R + h(2)P] = T(2)

αβ − δ2G[0]
αβ [h(1), h(1)] − δG[1]

αβ [h(1)]

δG[0]
αβ [h(1)R + h(1)P] = T(1)

αβ
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• Field equations for each m-mode take the form:

D2zμ

dτ2 = ϵf μ
(1)(h

(1)R) + ϵ2f μ
(2)(h

(1)R, h(2)R) + $(ϵ3)• Self-force computed 
from these regular fields



Field equations

Niels Warburton 4.5PN vs 2SF

δG[0]
αβ [h(2)R] = T(2)

αβ − δ2G[0]
αβ [h(1), h(1)] − δG[1]

αβ [h(1)] − δG[0])
αβ [h(2)P]

δG[0]
αβ [h(1)R] = T(1)

αβ − G[0]
αβ [h(1)P]

• Field equations for each m-mode take the form:



Field equations

Niels Warburton 4.5PN vs 2SF

δG[0]
αβ [h(2)R] = T(2)

αβ − δ2G[0]
αβ [h(1), h(1)] − δG[1]

αβ [h(1)] − δG[0])
αβ [h(2)P]

δG[0]
αβ [h(1)R] = T(1)

αβ − G[0]
αβ [h(1)P]

Mino, Sasaki, Tanaka 1997

Quinn and Wald 1997

MiSaTaQuWa equations

Pound 2012

Gralla 2012

• Field equations for each m-mode take the form:



Field equations

Niels Warburton 4.5PN vs 2SF

δG[0]
αβ [h(2)R] = T(2)

αβ − δ2G[0]
αβ [h(1), h(1)] − δG[1]

αβ [h(1)] − δG[0])
αβ [h(2)P]

δG[0]
αβ [h(1)R] = T(1)

αβ − G[0]
αβ [h(1)P]

Mino, Sasaki, Tanaka 1997

Quinn and Wald 1997

MiSaTaQuWa equations

Pound 2012

Gralla 2012

- Non-compact

- Diverges on the worldline

• Field equations for each m-mode take the form:



Field equations

Niels Warburton 4.5PN vs 2SF

δG[0]
αβ [h(2)R] = T(2)

αβ − δ2G[0]
αβ [h(1), h(1)] − δG[1]

αβ [h(1)] − δG[0])
αβ [h(2)P]

δG[0]
αβ [h(1)R] = T(1)

αβ − G[0]
αβ [h(1)P]

Mino, Sasaki, Tanaka 1997

Quinn and Wald 1997

MiSaTaQuWa equations

Pound 2012

Gralla 2012

- Non-compact

- Diverges on the worldline

- Non-compact

- ∝ ·Ω∂Ωh(1)

• Field equations for each m-mode take the form:
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Complete 1PA inspiral waveforms

Comparison with NR waveform from SXS collaboration

• Complete quasi-circular 1PA inspiral model with generic 
(precessing) secondary spin, linear primary spin and evolving  
and 


• Precession effects only enter the phase at 2PA (amplitudes 
effected at 1PA)

m1
χ1
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Resonances (0.5PA)

[Image credit: Philip Lynch]



Leads to a significant 
phase corrections

Niels Warburton Waveform modelling for I/EMRIs

Resonances (0.5PA) in FEW

 becomes 
momentarily rational
Ωr /Ωθ

 “jumps” slightly across 
the resonance
ΩA

φ̃A = ϵ−1φ(0)
A (ΩB) + ϵ−1/2φ(1/2)

A (ΩB) + ϵ0φ(1)
A (ΩB) + $(ϵ1/2)

Chapman-Bird, NW
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Resonances (0.5PA) in FEW

Goal: modular framework in FEW. Given a resonance surface and 
jump conditions FEW can efficiently model any resonant phenomena.

Chapman-Bird, NW
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1PA secondary spin effects

• Inspiral trajectory including 1PA conservative 
effects has been NIT’ed (fast to compute)


• Dissipative correction is computable but still 
need to tile parameter space and build into FEW

Piovano, Witzany  
Drummond, Hughes, Lynch et al  
Skoupý et al.

https://arxiv.org/search/?searchtype=author&query=Skoup%C3%BD%2C+V
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Complete inspiral-merger-ringdown models

• The multiscale expansion used in the inspiral breaks down at the ISCO


• Implement new expansions for the transition-to-plunge and plunge 
region


• First results appearing. Fast waveform generation speed maintained.

Küchler, Compère, 
Durkan, Pound


