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How to observe the gravity field?

Available techniques
o Satellite gravimetry
o Terrestial gravimetry
o GNSS station displacements

geoid
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o Sets the stage for all measurements
o Completely new measurement approach:
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How to observe the gravity field?

Available techniques
o Satellite gravimetry
o Terrestial gravimetry
o GNSS station displacements
o Clock networks

General Relativity
o Sets the stage for all measurements
o Completely new measurement approach:

● clocks probe the curved spacetime 
geometry by their proper time

geoid

GENERAL RELATIVITY MEETS GEODESY



PAGE 8
8

gravitational red shift:
Δν/ν = ΔU/c2

M. Vermeer, Rep. of the Finnish Geod. Insti. (1983)
A. Bjerhammar, Bull. Geodesique (1985)

geoid
ΔU 

Clock comparison
o 1 cm-resolution within reach 

(1×10⁻¹⁸ optical clock)
o no error accumulation over distance
o high spatial resolution (atoms are small)
o fast measurements

Requirements
o two (transportable) optical clocks

with 10⁻¹⁸ uncertainty 
o link to compare them
o physical justification → GR
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optical fibre links

Frequency links
o Optical fibre links: 

<10⁻¹⁸ instability in 100 s, 
<10⁻¹⁹ offsets
Schioppo et al. 
Nature Commun (2022), 
Koke et al. New J. Phys. (2019)

o GNSS frequency transfer
• 5×10⁻¹⁷ instability on 50 km baseline

Proc. 55th APTTISA Meeting 2024

Transportable optical clocks
o 2nd generation Sr lattice clock

● most stable transportable clock laser
Herbers et al. Opt. Lett.  (2022)

● uncertainty <3×10⁻¹⁸
Lisdat et al. Phys. Rev. Res. (2021), 
Dörscher et al. Phys. Rev. Res. (2023)

Sr clock Al⁺ clock

Chronometric levelling – state of the art
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Munich - PTB
o 2018: uncertainty of 27 cm

Dörscher et al. Phys. Rev. Res. (2023), Lisdat et al. Phys. Rev. Res. (2021)

o 2024: 5 cm goal

NPL - PTB
o Transportable & laboratory Sr clocks

Chronometric levelling campaigns
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o Geodesy is based on (post-)Newtonian notions
● Reference systems and surfaces
● Height definitions
● Newtonian gravity potential only

➔ Develop consistent GR theoretical framework to interpret 
the observations

o Relativity in terrestial and satellite gravimetry
● Terrestrial clock networks for realizing a global height system
● Clocks for gravity field recovery (Earth, space, hybrid)

● Needs also relativistic effects on satellite motion and on (quantum) sensor

General Relativity in Geodesy
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Reference surfaces
o Geodesy uses a number of reference surfaces
o One of them is the geoid: the „mathematical figure of Earth“ (Gauss)

● Equipotential surfaces of the Newtonian gravity potential W = U + V 
● One of them („mean sea level“) is singled out by convention W = W0  

o Based on measurement of acceleration (a-geoid)

Relativistic geoid
o “Surface where precise clocks run with the same speed“ 

A. Bjerhammar, Bull. Geodesique (1985)
→ Surface where atomic clocks show vanishing redshift

o Based on measurement of time/frequency (u-geoid) 
M. Soffel et al, Manuscripta Geodaetica (1988), Kopeikin et al, Phys. Lett. A (2015)

GR framework of Geodesy
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The relativistic geoid Philipp et al, Phys. Rev. D (2017)

o Introduce congruence of timelike worldlines with four-velocity u
o The redshift z is 

o Defines (dimensionless) redshift potential φ as    
o  φ is time independent iff eφ u = ξ is a Killing vector field Hasse & Perlick, J. Math Phys (1988) 

o Equipotential surfaces of φ are isochronometric: clocks have vanishing redshift

Equivalence to a-geoid
o We assume rigid rotation, constant angular velocity, no external forces
o allows to introduce an acceleration potential χ Ehlers 1961, Salzmann & Taub, Phys. Rev. (1954)

o We can show: φ = χ  → data fusion applies!

GR framework of Geodesy
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GR framework of Geodesy

Based on gravity potential 
o The (relativistic) potential numbers
o The (relativistic) chronometric height
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Relativistic gravity potential Philipp et al, Phys. Rev. D (2020)

o In adapted coordinates: exp(2φ) = g00 
o Introduce relativistic gravity potential
o The relativistic geoid is then a level surface of U*  

o In ppN limit
 

o The redshift 
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Setup
o We choose a simple quadrupolar model of the Earth
o Compare Newtonian geoid based on W  

with 1st-order post-Newtonian geoid based on U*  
o We expect 

● an overall spherical relativistic contribution due to the monopole 
● a latitude dependent correction (about three orders of magnitude smaller)

Comparison
o Coordinates cannot be directly compared

→ isometric embedding into Euclidian space
o How to choose       ? 

Remember: 

Comparison relativistic vs Newtonian geoid
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  U0
 * such that geoids coincide at equator 

Mean difference: 2.2mm
Latitudinal variations: 3μm

Mean difference: 4μm
Latitudinal variations: 8μm
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Gravitomagnetic effects
o Rotation also contributes to the gravitational field 

→ frame dragging/gravitomagnetism

o Proceed similar to redshift potential
● Introduce congruence of timelike Killing observers ξ  
● Then the twist vector field is
● Einstein’s vacuum equations imply the twist potential  

o One equipotential surface may be used as „rotoid“
o Redshift potential φ and twist potential ω 

→ purely chronometric reference frame

Lämmerzahl & Perlick, Phys. Rev. D (2023)

Non-Newtonian gravitational degrees of freedom 
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©DLR

The mission
o 2 satellites about 220 km apart; Microwave and Laser link
o Range changes are measured on the nm level
o Monthly global gravity field solutions of ~300 km spatial resolution

Satellite gravimetry: GRACE-FO
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Basic approach
o The Newtonian gravitational potential U  is written as

o Goal: determine the coefficients Clm , Slm from the data
● Model the satellite trajectories
● Model all kinds of perturbations
● Model the sensors

Gravity Field Recovery from space
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Simulator Tool XHPS
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o model of optical-
electrostatic 
accelerometers 

o satellite swarm scenarios
o test mass dynamics and a 

generic drag-free 
approach

o 1st post-Newtonian order
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Can clocks be used for 
Gravity Field Recovery from space?
o Challenge: separate the much larger special relativistic effects

(satellites move with ~10 km/s)
o 1st order Doppler effect can be eliminated by using a two way link
o Uncertainty in 2nd order Doppler effect maps into gravitational 

potential determination
o Rough estimate: 

1 cm geoid corresponds to about 10 μm/s in LEO (Low Earth Orbit)
o This seems to be very challenging...

Clocks in space
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Redshift calculation
o To determine redshift z we need the connecting light ray

● General Relativistic Emitter-Observer Problem (EOP)
● With moving boundaries

o Software GREOPy: 
● General Relativistic Emitter-Observer Python algorithm
● Solution of EOP in arbitrary stationary spacetimes
● Between two arbitrarily moving objects
● So far only first order image

Clocks in spaceClocks in space
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GREOPy link
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GREOPy link
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Preliminary study
o Closed loop simulation with XHPS
o GRACE-like mission scenario
o Assume GNSS navigation (GNV) with 2 

cm white noise
o Assume K-band ranging (KBR) with 

typical GRACE noise
o Assume extremely precise clocks (QCL)
o Estimate spherical harmonics up to 

degree and order 60

Gravity Field Recovery technically possible, but...
o GRACE-setup not well suited
o Clocks needs to be extremely precise

Clocks in space
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Take Home Messages
o Gravity field observations → climate variables 

o Clocks are a new tool to observe Earth’s gravity field
● Height resolution on (sub-)cm level in the next years! 

o General Relativistic theoretical framework of Geodesy under development
● Role of non-Newtonian gravitational degrees of freedom?

o Clocks in space are technically feasible for global Gravity Field Recovery,
but practically not precise enough
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