


Spin foams

* Non-perturbative real time path integral over quantum geometries
* Available as path integral over Euclidean signature geometries and as path integral over Lorentzian signature geometries

Z. = | Zgeom exp(iS(Eucl Geom)) 7, = {Qdeom exp(tS(Lor Geom))

* related to (Real Quantum) Regge calculus: path integral over piecewise flat geometries

Difference: classical Regge geometries replaced by (loop) quantum geometries



Spin foams

* Non-perturbative real time path integral over quantum geometries
* Available as path integral over Euclidean signature geometries and as path integral over Lorentzian signature geometries

Z. = | Zgeom exp(iS(Eucl Geom)) 7, = {Qdeom exp(zS(Lor Geom))

* related to (Real Quantum) Regge calculus: path integral over piecewise flat geometries

Difference: classical Regge geometries replaced by (loop) quantum geometries

* Advantages: * Incorporates quantum geometry: discrete quantum geometric excitations/ atoms of quantum spacetime
* Avoids conformal factor problem, which killed many Euclidean quantum gravity approaches
* Can extract (effective) metric
* Incorporates restriction to positive (semi-) definitive metrics



Spin foams
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* Available as path integral over Euclidean signature geometries and as path integral over Lorentzian signature geometries

Z. = | Zgeom exp(iS(Eucl Geom)) 7, = {Qdeom exp(zS(Lor Geom))

* related to (Real Quantum) Regge calculus: path integral over piecewise flat geometries

Difference: classical Regge geometries replaced by (loop) quantum geometries

* Advantages: * Incorporates quantum geometry: discrete quantum geometric excitations/ atoms of quantum spacetime
* Avoids conformal factor problem, which killed many Euclidean quantum gravity approaches
* Can extract (effective) metric
* Incorporates restriction to positive (semi-) definitive metrics

* Challenges: * Computational: extremely hard
* Oscillating infinite sums (analytical continuation limited)
* Many variables
* Even with HPC: only very small triangulation treated so far - for a long time limited insight into dynamical properties



Avoidance of conformal factor problem

* 2D Euclidean Quantum Regge Calculus:

Ambijorn, Nielsen, Rolf, Savvidy 1997
Spikes render length expectation values ill-defined [Ambj Y ]

* 3D and 4D Euclidean Quantum Regge Calculus:
Spikes capture conformal factor: exponential enhancement of such configurations

[e.g. BD, Steinhaus 201 []

Conformal factor problem killed almost all Euclidean lattice approaches.
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* 3D and 4D Euclidean Quantum Regge Calculus:
Spikes capture conformal factor: exponential enhancement of such configurations

[e.g. BD, Steinhaus 201 1]

Conformal factor problem killed almost all Euclidean lattice approaches.

* 3D and 4D Lorentzian Quantum Regge calculus with oscillating amplitudes:

Expectation values of arbitrary powers of lengths can be defined and are finite [Borissova, BD, Qu,
for spike and spine configurations. Schiffer 2024]

, Oscillatory amplitudes are essential - integrals do, in general, not converge absolutely.
(Lorentzian)

spine

*Spin foams?! - integral over length replaced by sum over area values

Discrete variable aligns with frequency of oscillation. Convergence may depend on measure. [Borissova, BD, Qu,
Schiffer 2024]



Spin foams as (decorated) TNW's

Computational: extremely hard  — how to extract large scale limit (behaviour with many building blocks)?

Treat it as a (real time) lattice system.

* Tensor network renormalization algorithms: can deal with oscillating amplitudes
* But: variables with finite range; developed in lower dimensions, originally without gauge symmetries

* Developed and tested (decorated) tensor network algorithms for gauge theories,

including first 3D algorithms for non-Abelian gauge theories 'BD, Martin-Benito,
* Rich phase diagrams for spin foam analogue systems: potential for interesting continuum behaviour Mizera, Steinhaus, ... 2014 - 2020]
* Tensor network techniques also useful to compute 4D spin foam amplitudes more efficiently [Asante, Steinhaus 2024]

* Challenges: * 4D models/ more realistic systems require significant increase in HPC capabilities
* Better algorithms?



Dealing with oscillating sums

How to deal with unbounded oscillating sums!? Acceleration techniques for series convergence. [Schmidt 41, Shanks 55, Wynn 56, ... ]
[ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.
Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.
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How to deal with unbounded oscillating sums? Acceleration techniques for series convergence. [Schmidt 41, Shanks 55, Wynn 56, ... ]
[ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.
Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.
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Works very well for sums with actions that are at most linear in the summation variable.

Consistent with quantum mechanics (Bohr correspondence principle).

Rel. Error~10~11

Rel. Error~1072



Spin foams - Dynamics

— Spin foam quantization leads to an extension of quantum configuration space: instead of length metrics we have truly an area metric space.
[BD, Ryan 2008-2012;]
[ BD, Padua-Arguelles 23]

* Construction of spin foam amplitudes: to get equations of motion for GR, constraint implementation is essential.

* So do spin foams lead to GR?
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[BD, Ryan 2008-2012;]
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* Construction of spin foam amplitudes: to get equations of motion for GR, constraint implementation is essential.

* So do spin foams lead to GR?

* There were indications that this was not the case: the flatness problem for spin foams (in semi-class. limit)

[Bonzom 2009; Hellmann, Kaminski 2013, Han 2013, ...,
Engle, Kaminski, Oliveira 2020, Dona, Gozzini, Sarno 2020, Gozzini 2021]

* Issue can be traced back to anomaly in constraint algebra and resulting weak implementation of
simplicity constraints [Asante, BD, Haggard 2020 PRL]

* Existing spin foam models (up to 2020) lead to very involved amplitudes: explicit test of EOM even on small triangulation still not performed

despite efforts to develop HPC tools for spin foams [Dona, Sarno, Gozzini, Frisoni, Steinhaus, Simao, Asante, Han, Liu, Qu, ... ]
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[Asante, BD, Padua-Arguelles CQG 2021]

* Captures key ingredients of spin foams: discrete area spectrum and weak implementation of constraints.

* Much more transparent encoding of the dynamics, in particular with regard to simplicity constraints.
Allowed resolution of the “flatness problem”.

* Much much more amenable to numerical investigations: seconds on laptop compared to weeks on HPC

* Can be constructed from higher gauge theory, closely related to higher gauge topological field theory.

Allowed explicit test of EOM on small triangulation - by computing path integral and expectation values of areas without any truncation/ approximation:
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Consistent with expectations from black hole entropy calculations.
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* Captures key ingredients of spin foams: discrete area spectrum and weak implementation of constraints.

* Much more transparent encoding of the dynamics, in particular with regard to simplicity constraints.
Allowed resolution of the “flatness problem”.

* Much much more amenable to numerical investigations: seconds on laptop compared to weeks on HPC

* Can be constructed from higher gauge theory, closely related to higher gauge topological field theory.

Allowed explicit test of EOM on small triangulation - by computing path integral and expectation values of areas without any truncation/ approximation:

|
i ol 0.952. First explicit test of
::: ' oot EOM in spin foams.
vy 1. —
= il

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 4

Results, show that spin foam do impose a discretized (Regge) gravitational dynamics.
Larger than expected range for y is allowed, e.g. ¥ ~ 0.1 is possible.

Consistent with expectations from black hole entropy calculations.

What about triangulations with many building blocks! Do the additional dof’s dominate in continuum limit?
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* Fully non-perturbative calculation out of reach.
* For this question: can resort to perturbative continuum limit. Assumption: non-perturbative limit leads to smooth (almost) flat manifold

* Effective spin foams: Area Regge action + (weakly implemented) constraints
* Consider continuum limit of Area Regge action on regular; infinite lattice

Area Regge action:

* discretization of Einstein-Hilbert Action

* but with length replaced by areas

* it was widely assumed that this action does not lead to general relativity since 90’s
* But (perturbative) continuum limit was never established

Length Regge action:

» discretization of Einstein-Hilbert Action, based on length variables attached to edges of a triangulation
* Continuum limit for linearized action performed in 80’s
* Essential step:

-for standard triangulation of hypercubic lattice one finds |5 degrees of freedom per lattice site

-10 are massless (including 4 gauge), rest are massive and need to be decoupled [Rocek, Williams 84]
-this leads to linearized GR action
-finer triangulations of hypercubic lattices: have always 10 massless dof’s, many many more massive dof [BD 2023]

-can be also done for Lorentzian signature [Asante, BD to appear]



Continuum limit of Area Regge action

BD, Kogios 2022,
Asante, BD to appear]

* Constructed linearized Area Regge action on a triangulation of the hyper-cubical lattice
* Depending on choice of lattice: 50 or 100 variables or more per lattice vertex
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Findings:

* Only graviton degrees of freedom are massless

* All other degrees of freedom are either gauge or (Planck) massive

* Lowest order in lattice lengths (second order in derivatives) reproduces (linearized) Einstein Hilbert action

=Spin foams do have additional degrees of freedom (to length metric), but these are very massive.
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* Why Weyl? We integrate out traceless parts of Area metric - these couple to traceless parts of Riemann tensor.
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Continuum limit of Area Regge action

BD, Kogios 2022,
Asante, BD to appear]

* Constructed linearized Area Regge action on a triangulation of the hyper-cubical lattice
* Depending on choice of lattice: 50 or 100 variables or more per lattice site

Findings:

* Only graviton degrees of freedom are massless

* All other degrees of freedom are either gauge or (Planck) massive

* Lowest order in lattice lengths (second order in derivatives) reproduces (linearized) Einstein Hilbert action

=Spin foams do have additional degrees of freedom (to length metric), but these are very massive.

* Next to leading order ~ — Weyl* 4+ 0(0°)

* This correction can be explained by area metric (constructed from triangle areas on each hypercube)
* Has more dof’s than length metric. Integrating these out leads to the correction term.
* Why Weyl? We integrate out traceless parts of Area metric - these couple to traceless parts of Riemann tensor.

* Lorentzian signature works also.
-But need (slightly) an-isotropic lattice: fluctuations away from null triangles are suppressed
- Masses can be positive and negative.

= Continuum limit for Area Regge action includes a Weyl squared correction. Induced from an area metric.
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* Even if we do: result does not change in an essential way.



Continuum limit for effective spin foams ...,

Asante, BD to appear]

* Effective spin foams: Area Regge action + (weakly implemented) constraints

* constraint terms only involve non-length degrees of freedom
* do only change the mass terms,

* but not the linear GR part

* and only the pre-factor of Weyl squared term

* Continuum limit: Flatness problem is resolved.
 Additional degrees of freedom massive.

* Do not need explicit constraint implementation.

* Even if we do: result does not change in an essential way.

Universality: Spin foam models differ in how/ whether constraints are implemented.

But this does not seem to matter in the continuum limit.

Surprise: The Barret-Crane Spinfoam model could lead to GR.
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Effective continuum dynamics for spin foams

Can one derive a Einstein+ Weyl*2 action directly in the continuum!?

* Spin foams derived from quantization of Plebanski action

* Modified Plebanski actions: replace constraints by potential terms for constrained dof’s [Kransov 08+]
e Chiral version: leads to (“deformed version of”” ) GR [[lg"an??\/,] Freidel]
peziale

* Non-chiral version (used in spin foams): leads to bi-metric theory of gravity

[Borissova, BD 2022:]

* To mimic split of simplicity constraints into sharply and weakly imposed sets, replace only weakly imposed constraints by potential terms
* Solving for connection: leads to an action in terms of area metrics i
* In linearized theory integrate out non-length metric degrees of freedom: o) ) 1 1
e ; ; CLB) = OL i) = NCyppo W O

) Consistent with continuum limit of effective spin foams!

* Propagator: Prop = ( 12 | 12
p M

No additional poles!
[chiral Plebanski: Freidel '08, Krasnov 08, Area-metric: Borissova, BD, 2022]

* Possible observational signature: mixing of Plus/Cross graviton modes (due to parity symmetry violating action).
[ Borissova, BD, Krasnov 2023]

Area metric action captures enlargement of quantum configuration space in spin foams.



Summary

* Spin foams - promising Lorentzian path integral approach, but hard computational challenges

* Can avoid conformal factor problem which killed many Euclidean approaches

* Effective spin foams: led to huge computational simplifications, allowed for first explicit test of EOM

* Allowed for derivation of perturbative continuum limit: (linearized) GR plus Weyl squared correction

» Effective continuum action for spin foams based on area metrics: new avenues to phenomenology

* Possible observational signature: mixing of Plus/Cross graviton modes.



Outlook

* Phenomenology of area metric actions [wip w/ Borissova]

* Area metric actions to higher order and area metric renormalization flow [wip w/' Borissova, Eichhorn, Schiffer ]
* Flow of Barbero-Immirzi parameter and investigation of special case with no additional pole

* Effective spin foams for (less and less) symmetry reduced sectors/ cosmology [BD, Padua-Arguelles 2023, wip]

* Continuum limit of spin foams - improve computational techniques



Thank you!



Area metrics from spin foams: three different ways

Micro-scopic:

Meso-scopic:

Macro-scopic:

[BD, Ryan '08, Freidel, Speziale ’10]

4-simplex quantum geometry specified by
20 quantities

[Asante, BD, Haggard ’20, BD ’21]

Effective spin foams: allowing for
lattice perturbation theory
(50 variables per vertex)

[Krasnov ’07]

Modified Plebanski framework

—

[BD, Padua-Arguelles ’23]

20 quantities define area metric for 4-
simplex

[ BD, Kogios '22; Asante BD ’24]

Continuum limit: Leading order dynamics
described by area metrics associated to
hypercubes

Actions
are consistent.

[Borissova, BD ’22]

Allows derivation of area metric action




(Naive) Semi-classical limit of spin foams

[Barrett-Williams, Barrrett-Dowdall-Fairbairn-Gomes-Hellmann, Conrady-Freidel, ...]

Area Regge action SAR(At) — Z At ‘ Gt(At) Equation of motion: 0= Gt(At)
Seem to demand flatness
Length Regge action Sir(L,) = Z A(L,) - €(L,) Equation of motion: 0) = Z %6 (L)
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curvature angles

discretization of Einstein
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Area Regge action SAR(At) — Z At ‘ Gt(At) Equation of motion:
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curvature angles

The continuum limit of the Area Regge dynamics was not understood until recently.
It was assumed that it does not lead to general relativity.

This assumption lead to the “flatness problem” for spin foams.

[Barrett-Rocek-Williams 97]
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(Naive) Semi-classical limit of spin foams

[Barrett-Williams, Barrrett-Dowdall-Fairbairn-Gomes-Hellmann, Conrady-Freidel, ...]

Area Regge action SAR(At) — Z At ‘ Gt(At) Equation of motion: 0= Gt(At)
Seem to demand flatness
Length Regge action SLR(L ) = Z At(L ) GI(L ) Equation of motion: ) = Z %6 (L )
oL, "¢

curvature angles

discretization of Einstein
equations

The continuum limit of the Area Regge dynamics was not understood until recently.
It was assumed that it does not lead to general relativity. [Barrett-Rocek-Williams 97]

This assumption lead to the “flatness problem” for spin foams.

“Discrete” resolution: Together with /i we have also to scale the anomaly parameter y to be small. Explicit numerical proof for discrete dynamics.

[Asante, BD, Haggard ’20, Asante, BD, Haggard 21,
Asante, BD, Padua-Arguelles 21]

“Continuum” resolution: Surprise! The continuum limit of Area Regge calculus gives general relativity (+ corrections).
[BD 21, BD, Kogios 22]



Continuum limit of Area Regge action

Length Regge and Area Regge calculus are defined on general triangulations.
Dynamics appears non-transparent. L

Perturbative expansion on triangulation of regular lattice (background describing flat space time). = :

Lattice action yields linearized Einstein-Hilbert action.
There are |5 degrees of freedom per lattice vertex,
[Rocek, Williams "83] but 5 are spurious (have a lattice constant dependent mass term).
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Continuum limit of Area Regge action

Length Regge and Area Regge calculus are defined on general triangulations.
Dynamics appears non-transparent. L

Perturbative expansion on triangulation of regular lattice (background describing flat space time). = :

Lattice action yields linearized Einstein-Hilbert action.

_ength Regge:
There are |5 degrees of freedom per lattice vertex,

[Rocek, Williams "83] but 5 are spurious (have a lattice constant dependent mass term).
Area Regge: Zeroth order in lattice constant: Linearized Einstein-Hilbert action.
[BD "21, BD, Kogios "22] Lowest order correction: Arises from area metric dof’s (additional to length dof’s)

linearized area metric —> h,){

S~ Sey(h)+y-Weyl —y- (M?*+..) - y+ ...

S

c

o~ Sp(h) + Weyl - M~ - Weyl + ...

higher derivative correction




