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• Non-perturbative real time path integral over quantum geometries
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• related to (Real Quantum) Regge calculus:  path integral over piecewise flat geometries 
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• Avoids conformal factor problem, which killed many Euclidean quantum gravity approaches
• Can extract (effective) metric
• Incorporates restriction to positive (semi-) definitive metrics
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• related to (Real Quantum) Regge calculus:  path integral over piecewise flat geometries 

                    Difference:  classical Regge geometries replaced by  (loop) quantum geometries
                        

• Advantages: 

• Challenges: 

• Incorporates quantum geometry:  discrete quantum geometric excitations/ atoms of quantum spacetime
• Avoids conformal factor problem, which killed many Euclidean quantum gravity approaches
• Can extract (effective) metric
• Incorporates restriction to positive (semi-) definitive metrics

• Computational: extremely hard
• Oscillating infinite sums (analytical continuation limited)
• Many variables
• Even with HPC: only very small triangulation treated so far   - for a long time limited insight into dynamical properties



Avoidance of conformal factor problem
• 2D Euclidean Quantum Regge Calculus: 

Spikes render length expectation values ill-defined   

• 3D and 4D Euclidean Quantum Regge Calculus: 
Spikes capture conformal factor:  exponential enhancement of such configurations  

[e.g.  BD, Steinhaus 2011]

 Conformal factor problem killed almost all Euclidean lattice approaches.  

[Ambjorn, Nielsen, Rolf, Savvidy 1997]



Avoidance of conformal factor problem
• 2D Euclidean Quantum Regge Calculus: 

Spikes render length expectation values ill-defined   

• 3D and 4D Euclidean Quantum Regge Calculus: 
Spikes capture conformal factor:  exponential enhancement of such configurations  

[e.g.  BD, Steinhaus 2011]

• 3D and 4D Lorentzian Quantum Regge calculus with oscillating amplitudes:  

Expectation values of arbitrary powers of lengths can be defined and are finite 
for spike and spine configurations.
Oscillatory amplitudes are essential  - integrals do, in general, not converge absolutely.

 Conformal factor problem killed almost all Euclidean lattice approaches.  
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I. INTRODUCTION

The path integral for quantum gravity requires many choices to be made [1], such as specifying
the space of geometries to be summed over, or the regularization of the path integral. One such
regularization is provided by Quantum Regge calculus [2–4], where the space of geometries is given
by piecewise flat 1 geometries, constructed via triangulations. The geometry of these triangulations
is uniquely specified by assigning lengths to all edges of the triangulation. The Regge action [2] is
a discretization of the Einstein-Hilbert action based on piecewise linear and flat geometries. This
regularizes the infinite-dimensional path integral and reduces it to an integral over finitely many
edge lengths.

This does however not guarantee the finiteness of the path integral: There are configurations
where edge lengths can 2 become arbitrarily large. A class of such configurations are called spikes,
which are defined as follows, see also the left panel of Fig. 1: consider a bulk vertex v and the
set of all simplices containing this vertex, i.e. the star of v. We fix the length of the edges in
the boundary of this set to some finite values, thus also fixing a finite value for the volume of
this boundary. Spikes are configurations where the length of the edges sharing the vertex v can
become arbitrarily large. The left panel of Fig. 1 shows an illustration of a spike configuration in
two spacetime dimensions.
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FIG. 1: Left: Illustration of a spike configuration in d = 2 Lorentzian spacetime. The boundary complex
is given by the three black edges whose length is kept fixed. The blue vertex v and the dashed blue edges
are in the bulk. The bulk edges can become arbitrarily large. Right: Illustration of a spine configuration in
d = 2 Lorentzian spacetime. The boundary complex is given by the four black edges whose lengths are kept
fixed. The dashed blue line represents a bulk edge which can become arbitrarily large. This is possible in
Lorentzian signature, as one can tilt the boundary edges arbitrarily close towards the light rays represented
by the dotted gray lines.

1 One can also choose piecewise homogeneous geometries [5].
2 The choice of edge lengths is restricted by the (Euclidean or Lorentzian) generalized triangle inequalities. These
triangle inequalities guarantee that any top-dimensional simplex of the triangulation can be embedded into (Eu-
clidean or Lorentzian) flat space.
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[Borissova, BD, Qu, 
Schiffer 2024]

spike

(Lorentzian)
 spine

[Ambjorn, Nielsen, Rolf, Savvidy 1997]

Discrete variable aligns with frequency of oscillation. Convergence may depend on measure.

•Spin foams?   - integral over length replaced by sum over area values 

[Borissova, BD, Qu, 
Schiffer 2024]



Spin foams as (decorated) TNW’s
Computational: extremely hard      —   how to extract large scale limit (behaviour with many building blocks)?  

Treat it as a (real time) lattice system. 

• Tensor network renormalization algorithms:  can deal with oscillating amplitudes
• But: variables with finite range; developed in lower dimensions, originally without gauge symmetries

• Developed and tested (decorated) tensor network algorithms for gauge theories, 
including first 3D algorithms for non-Abelian gauge theories

• Rich phase diagrams for spin foam analogue systems: potential for interesting continuum behaviour
[BD, Martin-Benito, 
Mizera, Steinhaus, … 2014 - 2020]

• Tensor network techniques also useful to compute 4D spin foam amplitudes more efficiently [Asante, Steinhaus 2024]

• Challenges: • 4D models/ more realistic systems require significant increase in HPC capabilities
• Better algorithms?



Dealing with oscillating sums
How to deal with unbounded oscillating sums?  Acceleration techniques for series convergence.   [Schmidt 41,   Shanks 55,   Wynn  56, … ]     

[ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals. 
Contour deformation not necessary.   But reproduces results for integrals treated via contour deformation.
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From a mini-superspace
path sum:
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FIG. 1: The plot on the left panel shows the partial sums over time-like areas with cut-o↵ NB for the ball model. We sum all nB with
nB  NB . (The parameters for the spin foam sum area ⇤ = 0.2`�2

P and
p

Abdry ⇡ 0.033`2P .) On the right panel we show the series
resulting from applying Wynn’s epsilon algorithm (which will be explained in the main text) to the series defined by the first 100 partial
sums shown on the left. The resulting series has a highly accelerated convergence. The maximal relative error (defined in (3.9)) is of the

order of 10�11.

convergence of slowly converging series, and can also be used to define limit values to divergent series. We will see
that these limit values lead to physically reasonable results: e.g. for the computation of expectation values we rely on
such limit values, and in most cases the expectation values we compute will approximate well the classical solutions.

FIG. 2: The plot on the left panel shows the partial sums over time-like areas for the computation of the expectation values. That is
compared to the sums shown in Fig. 2 we insert a term proportional to n2

B . As before we sum over all positive values nB  NB . The
right panel shows Wynn’s epsilon algorithm applied to the series defined by the first 100 partial sums. This series shows quite a fast

convergence. Note that the (anti-) limit is a very small number, which we found is typical for the computation of the expectation values
in the ball model. The maximal relative error (defined in (3.9)) is of the order of 10�8.

The non-linear sequence transformations can be applied to compute the limit of sums or integrals with infinite
summation or integration range, respectively. To treat sums we form a series from the partial sums Sk, k = 0, 1, . . .

Sk =

Cmin+kCstepX

n=1

f(n) . (3.1)

Here one can choose an arbitrary minimal cut-o↵ Cmin for the sum, so that S0 represent the sum of Cmin terms. Cstep

is the step size for probing the partial sums. We found that choosing Cstep = 1 leads often to the best results.
For the application to integrals we define

Sk =

Z Cmin+k⇥Cstep

x0

f(x) dx . (3.2)

Cstep should be chosen such that the Sk probes the (largest frequency) oscillations of the integral S(y) =
R y
x0

f(x)dx,
i.e. there should be several Sk for each period.

Rel. Error~10−11
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The non-linear sequence transformations can be applied to compute the limit of sums or integrals with infinite
summation or integration range, respectively. To treat sums we form a series from the partial sums Sk, k = 0, 1, . . .

Sk =

Cmin+kCstepX

n=1

f(n) . (3.1)

Here one can choose an arbitrary minimal cut-o↵ Cmin for the sum, so that S0 represent the sum of Cmin terms. Cstep

is the step size for probing the partial sums. We found that choosing Cstep = 1 leads often to the best results.
For the application to integrals we define

Sk =

Z Cmin+k⇥Cstep

x0

f(x) dx . (3.2)

Cstep should be chosen such that the Sk probes the (largest frequency) oscillations of the integral S(y) =
R y
x0

f(x)dx,
i.e. there should be several Sk for each period.

Works very well for sums with actions that are at most linear in the summation variable.  
                   Consistent with quantum mechanics (Bohr correspondence principle). 

Rel. Error~10−8

Rel. Error~10−11



Spin foams - Dynamics

 Spin foam quantization leads to an extension of quantum configuration space:  instead of length metrics we have truly an area metric space.⇒

• Construction of spin foam amplitudes:  to get equations of motion for GR, constraint implementation is essential. 

• So do spin foams lead to GR?

[BD, Ryan 2008-2012;]     
[ BD, Padua-Arguelles 23]



Spin foams - Dynamics

 Spin foam quantization leads to an extension of quantum configuration space:  instead of length metrics we have truly an area metric space.⇒

• Construction of spin foam amplitudes:  to get equations of motion for GR, constraint implementation is essential. 

• So do spin foams lead to GR?

• There were indications that this was not the case:  the flatness problem for spin foams (in semi-class. limit)
[Bonzom 2009; Hellmann, Kaminski 2013,  Han 2013, …, 
Engle, Kaminski, Oliveira 2020, Dona, Gozzini, Sarno 2020,  Gozzini 2021]

• Issue can be traced back to anomaly in constraint algebra and resulting weak implementation of 
simplicity constraints [Asante, BD, Haggard 2020 PRL]

• Existing spin foam models (up to 2020) lead to very involved amplitudes: explicit test of EOM even on small triangulation still not performed
despite efforts to develop HPC tools for spin foams [Dona, Sarno, Gozzini, Frisoni,  Steinhaus, Simao, Asante, Han, Liu, Qu, … ]

[BD, Ryan 2008-2012;]     
[ BD, Padua-Arguelles 23]



Effective spin foams
• Captures key ingredients of spin foams: discrete area spectrum and weak implementation of constraints.

• Much more transparent encoding of the dynamics, in particular with regard to simplicity constraints. 
  Allowed resolution of the “flatness problem”.

• Much much more amenable to numerical investigations:  seconds on laptop compared to weeks on HPC

• Can be constructed from higher gauge theory, closely related to higher gauge topological field theory.

[Asante, BD, Haggard  PRL 2020]

[Asante, BD, Padua-Arguelles CQG 2021]

Allowed explicit test of EOM on small triangulation - by computing path integral and expectation values of areas without any truncation/ approximation:
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Figure 7: Absolute value of the partition function and normalized expectation values for the areas A1 and
A2 for boundary values leading to a very small curvature solution.

decreases with �⇤. In fact, for �⇤ = 80 the oscillations are no longer noticeable. For � ⇠ 0.72 to
� ⇠ 1.25 oscillations of a much lower frequency and smaller amplitude than in the previous regime
appear.

Starting near � ⇠ 1.25 we have fast oscillations, which grow rapidly in amplitude until reaching
a somewhat stable value. Again, the onset of these oscillations does not seem to depend on the
scale �⇤, but the frequency and amplitude increase with �⇤. Due to these oscillations the absolute
values of the partition function reach relatively small values repeatedly, and the smaller �⇤, the
closer the values come to zero.

We can see in Fig. 7 and Fig. 8 that these oscillations with � in the absolute value of the
partition function are reflected in the oscillatory behavior of the expectation values. In particular,
for the region where the partition function reaches relatively small values, the expectation values
show oscillations with relatively large amplitude. The amplitudes of the oscillations are particularly
large when the absolute values of the partition function nearly reaches zero, which tends to happen
for the smaller scale examples. Thus, for � > 1.25 we have the onset of a regime where close
matching with the classical solution is not reliable. Contrary to expectations coming from the
discussion in section II, the �-value for this onset does not seem to depend on the scale �⇤. We
will see that this behavior is specific to the small curvature case.

Fig. 8 shows the real parts of the expectation values for the deficit angles ✏1 and ✏2, as well as
the A1 and A2 variances for �⇤ 2 {10, 20, 40, 80}. Note that the area expectation values have been
normalized by their classical values, and the area-variances by (Asol

1 )2 and (Asol
2 )2, respectively. We

Results, show that spin foam do impose a discretized (Regge) gravitational dynamics.

Larger than expected range for  is allowed, e.g.   is possible.  

Consistent with expectations from black hole entropy calculations.

γ γ ∼ 0.1

First explicit test of 
EOM in spin foams.

γ
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decreases with �⇤. In fact, for �⇤ = 80 the oscillations are no longer noticeable. For � ⇠ 0.72 to
� ⇠ 1.25 oscillations of a much lower frequency and smaller amplitude than in the previous regime
appear.

Starting near � ⇠ 1.25 we have fast oscillations, which grow rapidly in amplitude until reaching
a somewhat stable value. Again, the onset of these oscillations does not seem to depend on the
scale �⇤, but the frequency and amplitude increase with �⇤. Due to these oscillations the absolute
values of the partition function reach relatively small values repeatedly, and the smaller �⇤, the
closer the values come to zero.

We can see in Fig. 7 and Fig. 8 that these oscillations with � in the absolute value of the
partition function are reflected in the oscillatory behavior of the expectation values. In particular,
for the region where the partition function reaches relatively small values, the expectation values
show oscillations with relatively large amplitude. The amplitudes of the oscillations are particularly
large when the absolute values of the partition function nearly reaches zero, which tends to happen
for the smaller scale examples. Thus, for � > 1.25 we have the onset of a regime where close
matching with the classical solution is not reliable. Contrary to expectations coming from the
discussion in section II, the �-value for this onset does not seem to depend on the scale �⇤. We
will see that this behavior is specific to the small curvature case.

Fig. 8 shows the real parts of the expectation values for the deficit angles ✏1 and ✏2, as well as
the A1 and A2 variances for �⇤ 2 {10, 20, 40, 80}. Note that the area expectation values have been
normalized by their classical values, and the area-variances by (Asol

1 )2 and (Asol
2 )2, respectively. We

Results, show that spin foam do impose a discretized (Regge) gravitational dynamics.

Larger than expected range for  is allowed, e.g.   is possible.  

Consistent with expectations from black hole entropy calculations.

γ γ ∼ 0.1

What about triangulations with many building blocks?    Do the additional dof’s dominate in continuum limit?

First explicit test of 
EOM in spin foams.

γ



Continuum limit for effective spin foams

• Fully non-perturbative calculation out of reach. 
• For this question: can resort to perturbative continuum limit.  Assumption: non-perturbative limit leads to smooth (almost) flat manifold
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• it was widely assumed that this action does not lead to general relativity    since 90’s
• But (perturbative) continuum limit was never established 



Continuum limit for effective spin foams

• Fully non-perturbative calculation out of reach. 
• For this question: can resort to perturbative continuum limit.  Assumption: non-perturbative limit leads to smooth (almost) flat manifold

• Effective spin foams:   Area Regge action + (weakly implemented) constraints
• Consider continuum limit of Area Regge action on regular, infinite lattice

Area Regge action:  
• discretization of Einstein-Hilbert Action
• but with length replaced by areas 
• it was widely assumed that this action does not lead to general relativity    since 90’s
• But (perturbative) continuum limit was never established 

Length Regge action:  
• discretization of Einstein-Hilbert Action, based on length variables attached to edges of a triangulation
• Continuum limit for linearized action performed in  80’s
• Essential step:

        -for standard triangulation of hypercubic lattice one finds 15 degrees of freedom per lattice site
        -10 are massless (including 4 gauge),   rest are massive and need to be decoupled
        -this leads to linearized GR action
        -finer triangulations of hypercubic lattices: have always 10 massless dof’s, many many more massive dof
        -can be also done for Lorentzian signature

[Rocek, Williams 84]

[BD 2023]

[Asante, BD to appear]



Continuum limit of Area Regge action
 
• Constructed linearized Area Regge action on a triangulation of the hyper-cubical lattice
• Depending on choice of lattice:  50 or 100 variables or more per lattice vertex

[BD 2021, 
BD, Kogios 2022, 
Asante, BD to appear]



Continuum limit of Area Regge action
 
• Constructed linearized Area Regge action on a triangulation of the hyper-cubical lattice
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• Constructed linearized Area Regge action on a triangulation of the hyper-cubical lattice
• Depending on choice of lattice:  50 or 100 variables or more per lattice site

[BD 2021, 
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• Only graviton degrees of freedom are massless
• All other degrees of freedom are either gauge or  (Planck) massive
• Lowest order in lattice lengths (second order in derivatives) reproduces (linearized) Einstein Hilbert action

Findings:

Spin foams do have additional degrees of freedom (to length metric), but these are very massive.⇒
• Next to leading order ∼ − Weyl2 + 𝒪(∂6)
• This correction can be explained by area metric (constructed from triangle areas on each hypercube)
•  Has more dof’s than length metric. Integrating these out leads to the correction term.
• Why Weyl?   We integrate out traceless parts of Area metric - these couple to traceless parts of Riemann tensor.

Continuum limit for Area Regge action includes a Weyl squared correction. Induced from an area metric.⇒

• Lorentzian signature works also. 
      -But need (slightly) an-isotropic lattice: fluctuations away from null triangles are suppressed
      - Masses can be positive and negative.
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Continuum limit for effective spin foams

• Effective spin foams:   Area Regge action + (weakly implemented) constraints

[BD 2021, 
Asante, BD to appear]

• constraint terms only involve non-length degrees of freedom
• do only change the mass terms, 
• but not the linear GR part
• and only the pre-factor of  Weyl squared term

• Continuum limit: Flatness problem is resolved.  
• Additional degrees of freedom massive. 
• Do not need explicit constraint implementation. 
• Even if we do: result does not change in an essential way. 

Universality:  Spin foam models differ in how/ whether constraints are implemented.

                      But this does not seem to matter in the continuum limit.

Surprise:  The Barret-Crane Spinfoam model could lead to GR.
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Area metric action captures enlargement of quantum configuration space in spin foams.

• Possible observational signature: mixing of  Plus/Cross graviton modes (due to parity symmetry violating action).
  [ Borissova, BD, Krasnov  2023]



Summary

• Spin foams - promising Lorentzian path integral approach, but hard computational challenges

• Can avoid conformal factor problem which killed many Euclidean approaches

• Effective spin foams:  led to huge computational simplifications, allowed for first explicit test of EOM

• Allowed for derivation of perturbative continuum limit:  (linearized) GR plus Weyl squared correction

• Effective continuum action for spin foams based on area metrics: new avenues to phenomenology

• Possible observational signature: mixing of  Plus/Cross graviton modes.



Outlook

• Area metric actions to higher order and area metric renormalization flow
• Flow of Barbero-Immirzi parameter and investigation of special case with no additional pole

[wip w/  Borissova, Eichhorn, Schiffer ]

• Effective spin foams for (less and less) symmetry reduced sectors/ cosmology

[wip w/  Borissova]• Phenomenology of area metric actions

[BD, Padua-Arguelles 2023, wip]

• Continuum limit of spin foams  - improve computational techniques



Thank you!



Micro-scopic:

Area metrics from spin foams: three different ways

Meso-scopic:

Macro-scopic:

4-simplex quantum geometry specified by 
20 quantities →

[BD, Padua-Arguelles ’23]

20 quantities define area metric for 4-
simplex

[BD, Ryan ’08,  Freidel, Speziale ’10]

Effective spin foams: allowing for 
 lattice perturbation theory 

(50 variables per vertex)

[Asante, BD, Haggard ’20,  BD ’21]

→ Continuum limit: Leading order dynamics 
described by area metrics associated to 

hypercubes

[ BD, Kogios ’22; Asante BD ’24]

Modified Plebanski framework

[Krasnov ’07]

→ Allows derivation of area metric action

[Borissova, BD ’22]

Actions 
are consistent.}



(Naive) Semi-classical limit of spin foams
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Seem to demand flatness
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equations

Area Regge action
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curvature angles

The continuum limit of the Area Regge dynamics was not understood until recently. 
It was assumed that it does not lead to general relativity.

“Discrete” resolution:   Together with  we have also to scale the anomaly parameter  to be small.  Explicit numerical proof for discrete dynamics.

“Continuum” resolution:   Surprise! The continuum limit of Area Regge calculus gives general relativity  (+ corrections).

ℏ γ

This assumption lead to the “flatness problem” for spin foams.

[Barrett-Williams, Barrrett-Dowdall-Fairbairn-Gomes-Hellmann,  Conrady-Freidel, …]
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Continuum limit of Area Regge action 

[Rocek, Williams ’83]

Length Regge and Area Regge calculus are defined on general triangulations. 
Dynamics appears non-transparent. 

Perturbative expansion on triangulation of regular lattice (background describing flat space time).

Length Regge: Lattice action yields linearized Einstein-Hilbert action.
There are 15 degrees of freedom per lattice vertex, 
but 5 are spurious (have a lattice constant dependent mass term).

3 3d lattice model

In this section we describe how the Regge action is related to the lattice graviton propagator
developping the original analysis by Hamber and Williams [8]. We consider the 3d case where
the lengths are the fundamental variables, thus we can address the questions at the end of
the previous section without the extra complicacy of the constraints (4) needed in 4d. [We
expect the results of this section to apply also to 4d length Regge calculus, and so to area
Regge calculus if this is proved equivalent to length Regge calculus.] Using (11), we have for
the tetrahedron

Qτ
ijkl = −

∂θij
∂Vkl

= −
1

9

lkl
sin θij

Ak Al

V 2
Cijkl (17)

with C the same matrix as before, and the following notation has been introduced: kl is the
edge opposite to kl, and Ak Al the (unique) pair of triangles different from Ak Al. Notice that
the need of the opposite edge in the columns of C comes from the fact that in (17) we are
deriving with respect to Vkl = lkl. The double index notation is required only in this formula.
For simplicity in the following calculations, let us introduce the following single index notation:
we use le = lij = Vij for the edge e between i and j, and θe = θij for the dihedral angle associated
with the edge e and thus hinging the pair of triangles Ai Aj . Finally, we define the tetrahedral
matrix Qτ

ee′ ≡ − ∂θe
∂le′

≡ Qτ
ijkl. This definition helps the comparison with the results of [8].

The 3d Schläfli identity reads
∑

e le dθe = 0, and the null vector is le. As we discussed
above for any dimension, the matrix (17) does not have simple scaling properties with respect
to the background geometry.4 This matrix is the quadratic order of the Regge action on a single

tetrahedron. To study how Qτ is related to the free graviton
propagator, we consider an infinite rectangular lattice, and
divide each block into six tetrahedra as shown in the picture,
namely drawing the diagonals on the six exterior faces plus
the interior diagonal connecting the vertices 0 and 7. All
tetrahedra contain the vertices 0 and 7, and can be obtained
from the six possible ways of going from 0 to 7 along three
cartesian edges. Consequently each tetrahedron has the same
edge structure: three cartesian edges, two face diagonals, and

4

5

0 1

3

6

2

7

the body diagonal (07). All the edges are oriented (from smaller to bigger number), so that in
the full lattice each edge can be identified giving its starting vertex and its direction, le ≡ lvê ,
where ê = (01) . . . (07) and v are the vertices in the lattice. Adapting cartesian coordinates
to this lattice, we have (01) = x̂µ = (1, 0, 0), (02) = ŷµ = (0, 1, 0), (03) = ẑµ = (0, 0, 1),
(04) = x̂µ + ŷµ = (1, 1, 0), and so on.

We now introduce the background around which we will compute the correlations. To

4The only elements for which we were able to find a simple relation to the distances are the ones for opposite
edges: using (6) we have

Qijij = −
1

9

lij
sin θij

AiAj

V 2
sin2 θij = −

1

6V
lij lij = −

1

d(ij),(ij) sinφ(ij),(ij)

, (18)

where d(ij),(ij) is the distance between the midpoints of the two opposite edges lij and lij , and φ(ij),(ij) the
angle between them.
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The 3d Schläfli identity reads
∑

e le dθe = 0, and the null vector is le. As we discussed
above for any dimension, the matrix (17) does not have simple scaling properties with respect
to the background geometry.4 This matrix is the quadratic order of the Regge action on a single

tetrahedron. To study how Qτ is related to the free graviton
propagator, we consider an infinite rectangular lattice, and
divide each block into six tetrahedra as shown in the picture,
namely drawing the diagonals on the six exterior faces plus
the interior diagonal connecting the vertices 0 and 7. All
tetrahedra contain the vertices 0 and 7, and can be obtained
from the six possible ways of going from 0 to 7 along three
cartesian edges. Consequently each tetrahedron has the same
edge structure: three cartesian edges, two face diagonals, and

4

5

0 1

3

6

2

7

the body diagonal (07). All the edges are oriented (from smaller to bigger number), so that in
the full lattice each edge can be identified giving its starting vertex and its direction, le ≡ lvê ,
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