Tackling quantum gravity non-perturbatively

Benjamin Knorr

"talk about asymptotic safety and the FRG methodology"

- "talk about asymptotic safety and the FRG methodology"
- "give a compact review of the state of the art of the subject"

- "talk about asymptotic safety and the FRG methodology"
- "give a compact review of the state of the art of the subject"
- "assess the future promise and challenges of your technical and computational tools vis-à-vis the physical properties they aim to unlock"

- "talk about asymptotic safety and the FRG methodology"
- "give a compact review of the state of the art of the subject"
- "assess the future promise and challenges of your technical and computational tools vis-à-vis the physical properties they aim to unlock"
- "keep in mind that not all participants are experts in your speciality"

- "talk about asymptotic safety and the FRG methodology"
- "give a compact review of the state of the art of the subject"
- "assess the future promise and challenges of your technical and computational tools vis-à-vis the physical properties they aim to unlock"
- "keep in mind that not all participants are experts in your speciality"

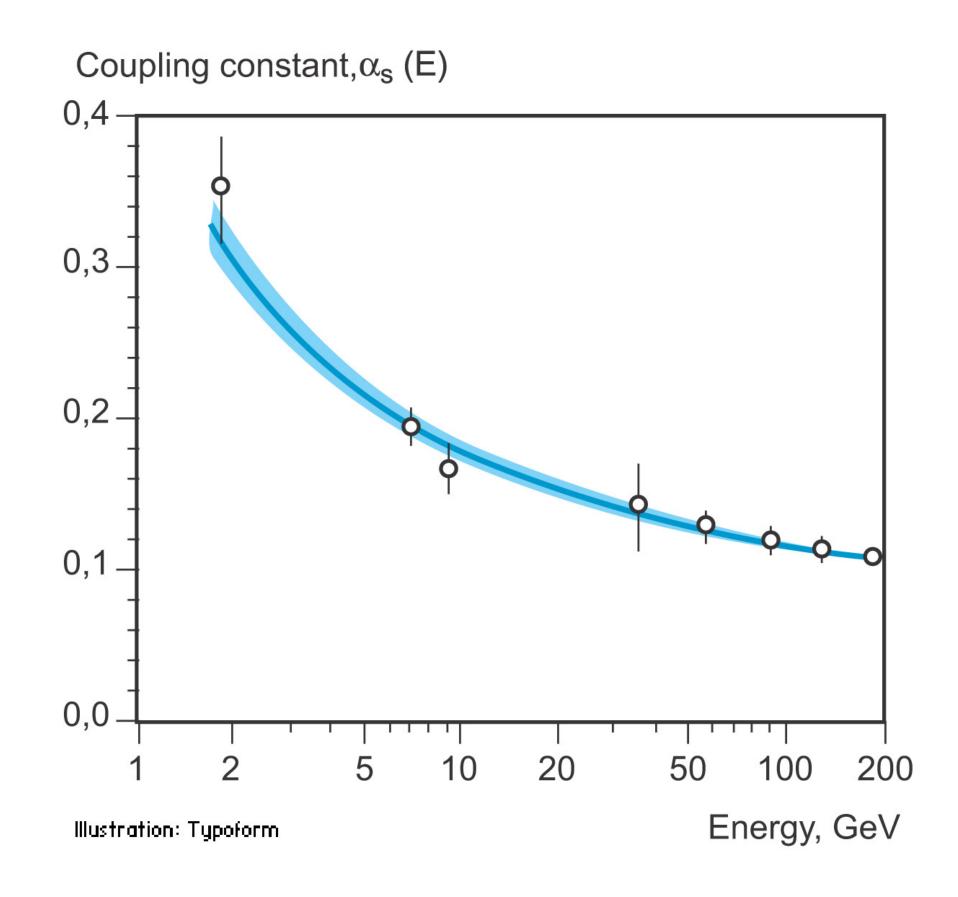
The bare-bones story of Asymptotic Safety

The bare-bones story of Asymptotic Safety

...or: Quantum Gravity as a Quantum Field Theory

• established experimental fact: coupling constants "run with energy"

established experimental fact: coupling constants "run with energy"



Nobel prize in Physics 2004 (Gross, Politzer, Wilczek) "for the discovery of asymptotic freedom in the theory of the strong interaction"

- established experimental fact: coupling constants "run with energy"
- measure scattering cross sections and compare them to theoretical predictions - coupling "constants" depend on energy scale dictated by their beta functions - renormalisation group

$$\beta_{\alpha_s} = -\left(11 - \frac{2}{3}N_f\right)\frac{\alpha_s^2}{2\pi} + \mathcal{O}(\alpha_s^3)$$

- established experimental fact: coupling constants "run with energy"
- measure scattering cross sections and compare them to theoretical predictions - coupling "constants" depend on energy scale dictated by their beta functions - renormalisation group
- Quo vadis, quantum gravity?

"standard" renormalisation via perturbation theory

- "standard" renormalisation via perturbation theory
- apply to gravity:

$$S^{GR} = -\frac{1}{16\pi G_N} \int d^4x \sqrt{-g} R$$

- "standard" renormalisation via perturbation theory
- apply to gravity:

$$S^{\text{GR}} = -\frac{1}{16\pi G_N} \int d^4x \sqrt{-g} R$$

 mass dimension of coupling is negative, indicates perturbative nonrenormalisability

$$[G_N] = -2$$

- "standard" renormalisation via perturbation theory
- apply to gravity:

$$S^{\text{GR}} = -\frac{1}{16\pi G_N} \int d^4x \sqrt{-g} R$$

- mass dimension of coupling is negative, indicates perturbative nonrenormalisability
- the actual problem: predictivity

$$[G_N] = -2$$

 due to negative mass dimension, each loop order needs new counterterms not of the form of the original action

- due to negative mass dimension, each loop order needs new counterterms **not** of the form of the original action
- one loop: GR is on-shell finite!

- due to negative mass dimension, each loop order needs new counterterms not of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)

- due to negative mass dimension, each loop order needs new counterterms not of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops:

$$\Delta\Gamma_{
m div,OS}^{2 ext{-loops}} \propto rac{1}{\epsilon} \int {
m d}^4 x \, \sqrt{-g} \, \left[\tilde{a} \, C_{\mu\nu}{}^{
ho\sigma} C_{\rho\sigma}{}^{ au\omega} C_{\tau\omega}{}^{\mu\nu} \right]$$

- due to negative mass dimension, each loop order needs new counterterms not of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops:

$$\Delta\Gamma_{\rm div,OS}^{\text{2-loops}} \propto \frac{1}{\epsilon} \int d^4x \sqrt{-g} \left[\tilde{a} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\tau\omega} C_{\tau\omega}{}^{\mu\nu} \right]$$

$$\tilde{a} \neq 0$$

Goroff, Sagnotti '85, '86 van de Ven '92

- due to negative mass dimension, each loop order needs new counterterms not of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops: new free parameter

- due to negative mass dimension, each loop order needs new counterterms not of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops: new free parameter
- higher loops: likely more free parameters at every order

- due to negative mass dimension, each loop order needs new counterterms **not** of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops: new free parameter
- higher loops: likely more free parameters at every order
 - ⇒ GR is perturbatively non-renormalisable

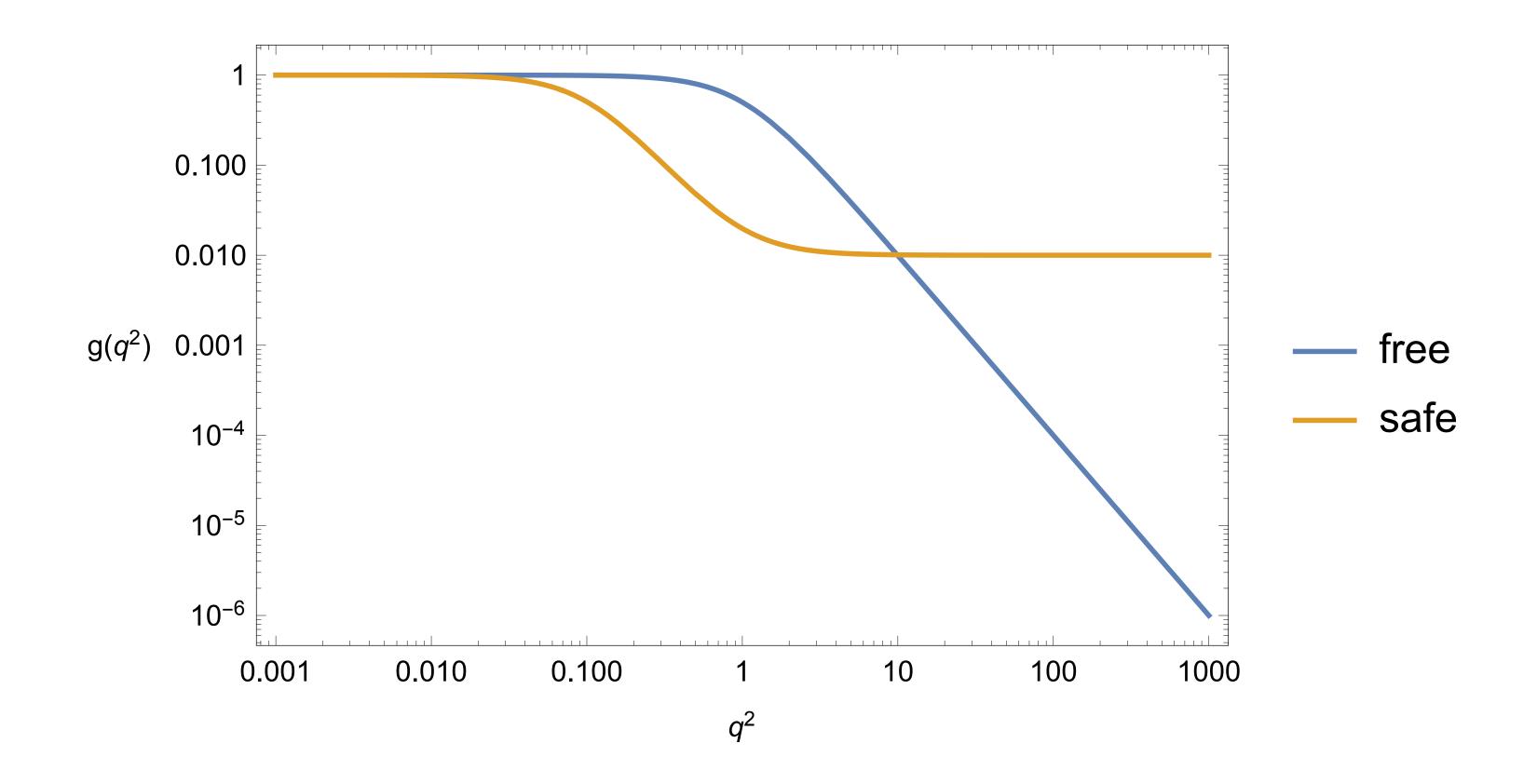
- due to negative mass dimension, each loop order needs new counterterms **not** of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops: new free parameter
- higher loops: likely more free parameters at every order
 - ⇒ GR is perturbatively non-renormalisable

- due to negative mass dimension, each loop order needs new counterterms **not** of the form of the original action
- one loop: GR is on-shell finite! (fails with matter)
- two loops: new free parameter
- higher loops: likely more free parameters at every order
 - ⇒ GR is perturbatively non-renormalisable

Is GR non-perturbatively renormalisable?

hypothesis: metric gravity (+suitable matter) can be formulated as a QFT in a consistent, non-perturbative way

hypothesis: metric gravity (+suitable matter) can be formulated as a QFT in a consistent, non-perturbative way



- hypothesis: metric gravity (+suitable matter) can be formulated as a QFT in a consistent, non-perturbative way
- conditions:
 - all dimensionless versions of essential couplings approach a finite value at high energies = fixed point
 - only finitely many relevant operators = finitely many measurements needed to uniquely fix theory

- hypothesis: metric gravity (+suitable matter) can be formulated as a QFT in a consistent, non-perturbative way
- conditions:
 - all dimensionless versions of essential couplings approach a finite value at high energies = fixed point
 - only finitely many relevant operators = finitely many measurements needed to uniquely fix theory

 predictivity

- hypothesis: metric gravity (+suitable matter) can be formulated as a QFT in a consistent, non-perturbative way
- conditions:
 - all dimensionless versions of essential couplings approach a finite value at high energies = fixed point
 - only finitely many relevant operators = finitely many measurements needed to uniquely fix theory

 predictivity

How to investigate:

- hypothesis: metric gravity (+suitable matter) can be formulated as a QFT in a consistent, non-perturbative way
- conditions:
 - all dimensionless versions of essential couplings approach a finite value at high energies = fixed point
 - only finitely many relevant operators = finitely many measurements needed to uniquely fix theory

 predictivity

How to investigate: Functional Renormalisation Group

The functional RG

The functional RG

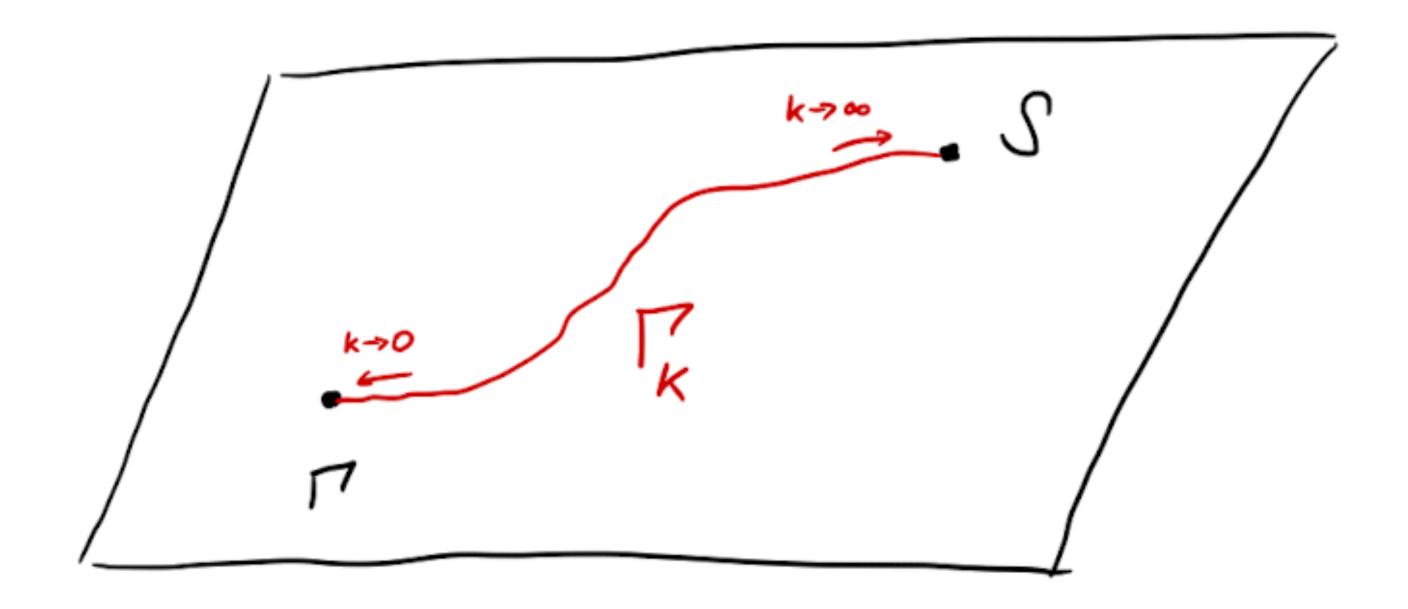
...or: the working horse of Asymptotic Safety

Asymptotic Safety via FRG

Wilsonian idea of integrating out modes shell by shell

Asymptotic Safety via FRG

Wilsonian idea of integrating out modes shell by shell



- Wilsonian idea of integrating out modes shell by shell
- governed by exact non-perturbative RG equation:

$$k\partial_k\Gamma_k = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k\right)^{-1} k\partial_k\mathfrak{R}_k\right]$$

Netterich '93

- Wilsonian idea of integrating out modes shell by shell
- governed by exact non-perturbative RG equation:

$$k\partial_k \Gamma_k = \frac{1}{2} \text{STr} \left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k \right)^{-1} k \partial_k \mathfrak{R}_k \right]$$

no free lunch: requires approximation

Wetterich '93

- Wilsonian idea of integrating out modes shell by shell
- governed by exact non-perturbative RG equation:

$$k\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k \right)^{-1} k \partial_k \mathfrak{R}_k \right]$$

Wetterich '93

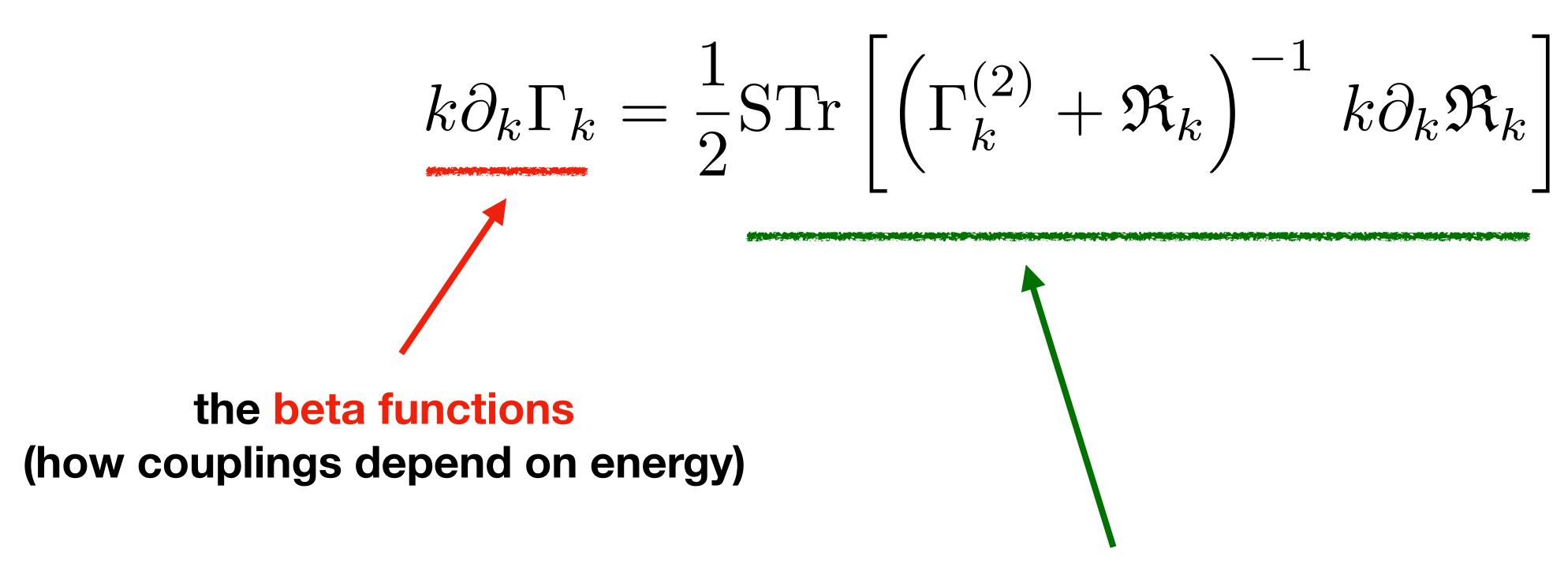
- no free lunch: requires approximation
- no free dinner: standard implementation uses Euclidean signature

$$k\partial_k \Gamma_k = \frac{1}{2} \text{STr} \left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k \right)^{-1} k \partial_k \mathfrak{R}_k \right]$$

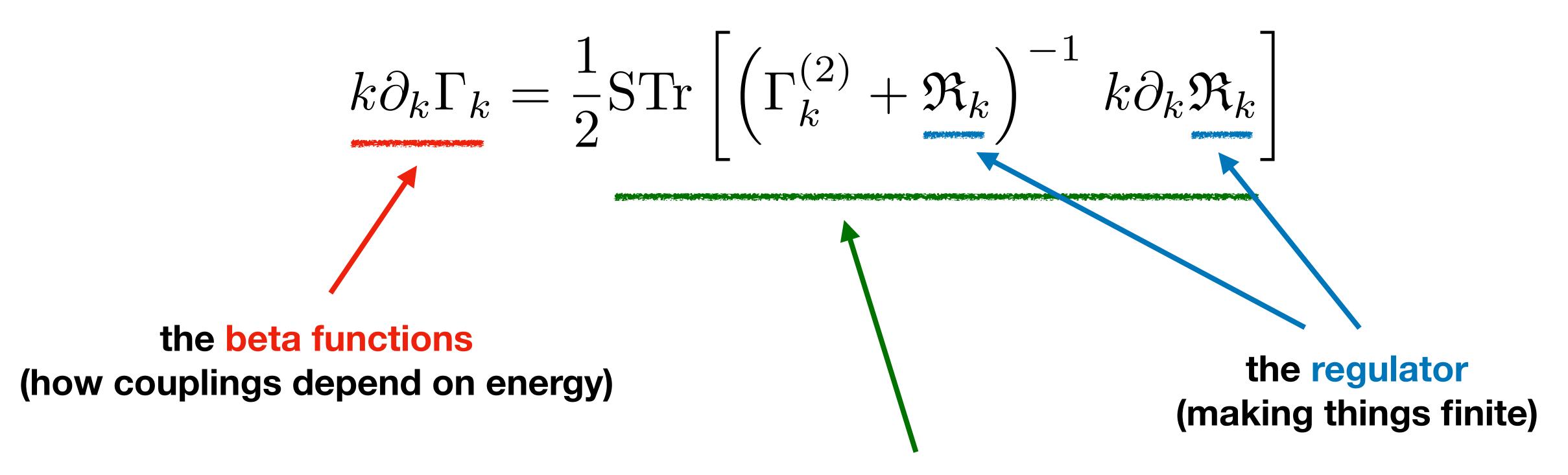
$$k\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k \right)^{-1} k \partial_k \mathfrak{R}_k \right]$$

the beta functions

(how couplings depend on energy)



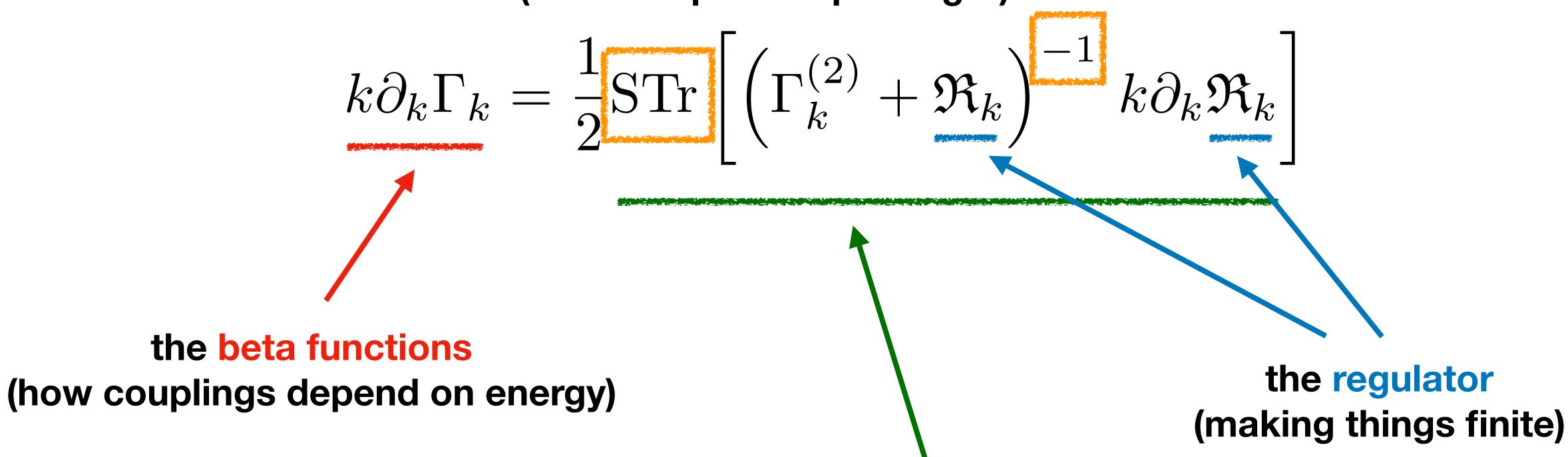
the non-perturbative RG flow (a fully-dressed one-loop Feynman diagram)



the non-perturbative RG flow (a fully-dressed one-loop Feynman diagram)

the happy little challenges

(what keeps me up at night)



the non-perturbative RG flow (a fully-dressed one-loop Feynman diagram)

The state of the art

The state of the art

...or: why I'm not doing string theory (yet)

 first computation in '96 by Reuter — suitable fixed point exists in simple approximation

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:
 - all find the fixed point

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:
 - all find the fixed point
 - bounds on allowed matter (not everything goes)

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:
 - all find the fixed point
 - bounds on allowed matter (not everything goes)
 - very few relevant parameters (ca. 3)

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:
 - all find the fixed point
 - bounds on allowed matter (not everything goes)
 - very few relevant parameters (ca. 3)
 - first steps towards Lorentzian flows (no surprises)

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:
 - all find the fixed point

- several chapters in Handbook of Quantum Gravity:
- 2210.11356, 2210.13910, 2210.16072, 2211.03596, 2212.07456, 2302.04272, 2302.14152, 2309.10785, +1 (not on arxiv)
- bounds on allowed matter (not everything goes)
- very few relevant parameters (ca. 3)
- first steps towards Lorentzian flows (no surprises)

- first computation in '96 by Reuter suitable fixed point exists in simple approximation
- since then, hundreds of papers:
 - all find the fixed point

several chapters in Handbook of Quantum Gravity:

2210.11356, 2210.13910, 2210.16072, 2211.03596, 2212.07456, 2302.04272, 2302.14152, 2309.10785, +1 (not on arxiv)

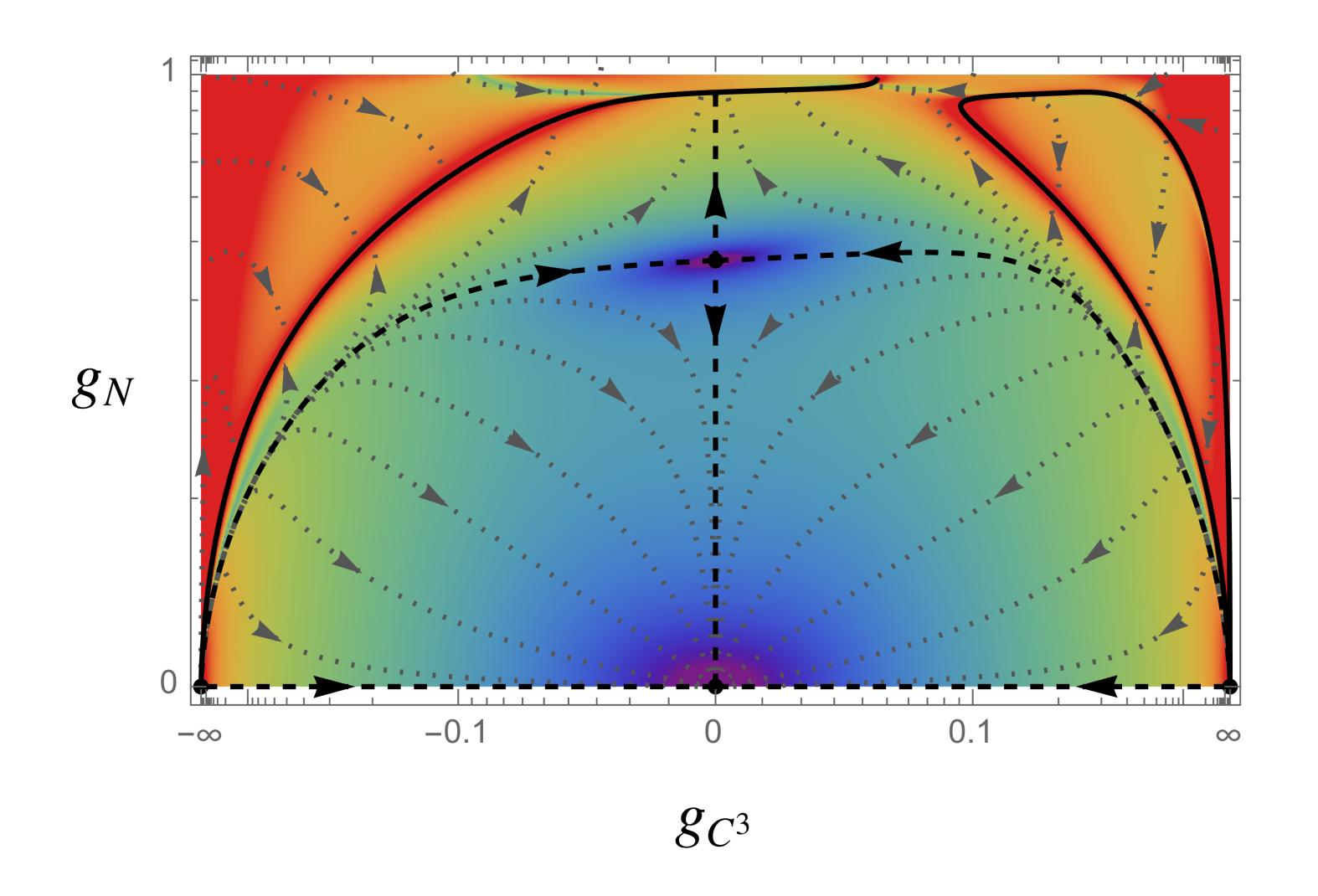
- **bounds** on allowed matter (not everything goes) order now for the low price of 1278.97 EUR!
- very few relevant parameters (ca. 3)
- first steps towards Lorentzian flows (no surprises)

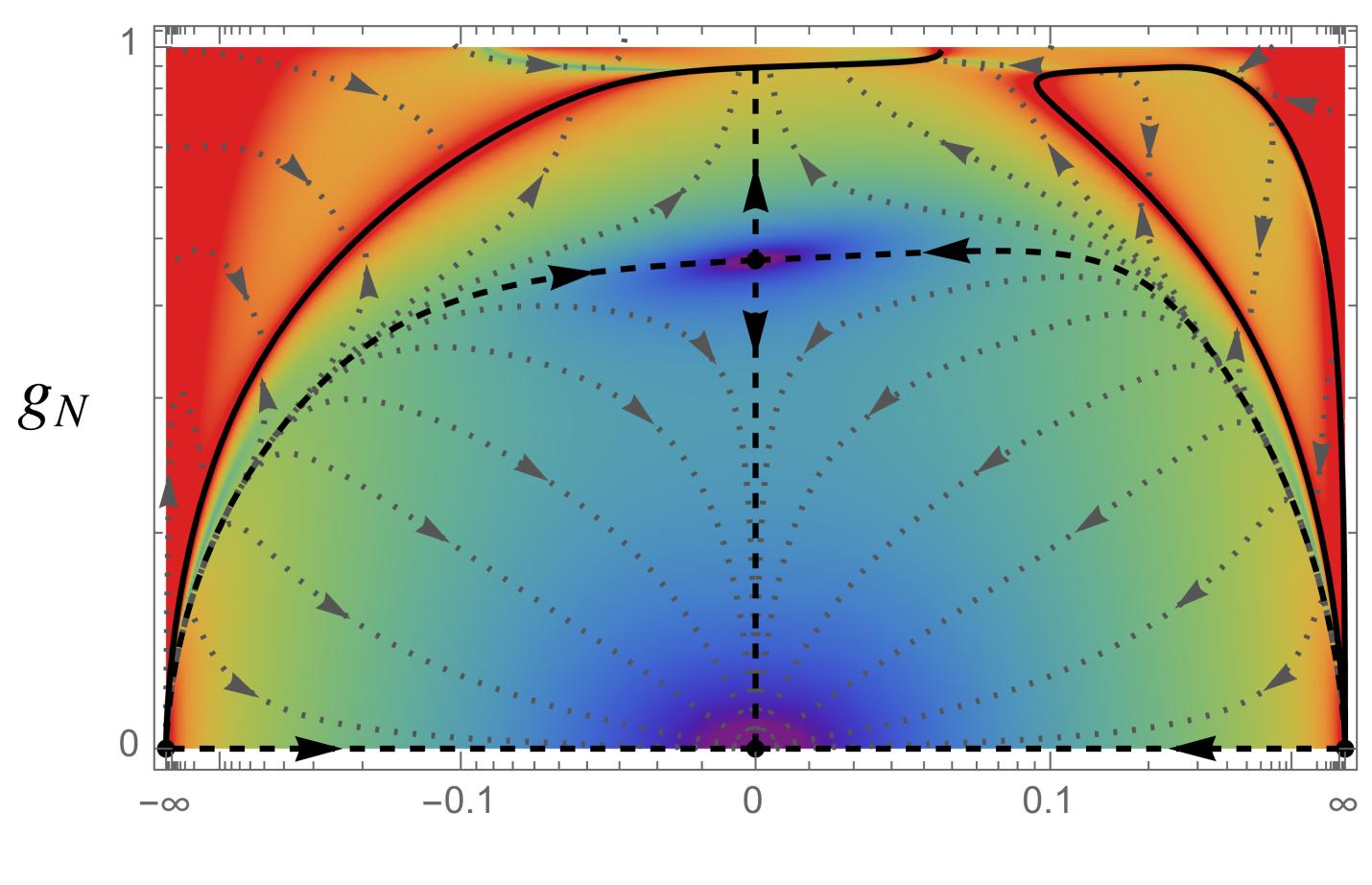
Q: What does AS do with the two-loop counterterm?

Q: What does AS do with the two-loop counterterm?

approximation:

$$\Gamma_k = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left[2\Lambda_k - R + G_{C^3} C_{\mu\nu}^{\rho\sigma} C_{\rho\sigma}^{\tau\omega} C_{\tau\omega}^{\mu\nu} \right]$$





AS tames the two-loop counterterm!

see also H. Gies, BK, S. Lippoldt, F. Saueressig 1601.01800

 g_{C^3}

Computational tools and where to apply them

Computational tools and where to apply them

...or: what I'm doing for a living

$$k\partial_k\Gamma_k = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k\right)^{-1} k\partial_k\mathfrak{R}_k\right]$$

inversion

computing the two-point function

tensor contractions

$$k\partial_k\Gamma_k = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathfrak{R}_k\right)^{-1} k\partial_k\mathfrak{R}_k\right]$$

functional trace

Euclidean vs Lorentzian

beta functions: IDEs

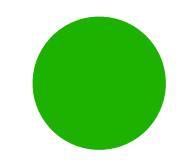
computer tensor algebra

computer tensor algebra

key tools: xAct package (MMA), FORM

computer tensor algebra

key tools: xAct package (MMA), FORM



computer tensor algebra

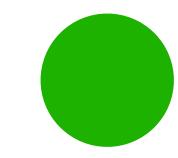
 $\partial_t \Gamma_k = \frac{1}{2} \bigcirc - \bigcirc$ $\partial_t \Gamma_k^{(h)} = -\frac{1}{2} \longrightarrow + \longrightarrow \otimes$ $\partial_t \Gamma_k^{(2h)} = -\frac{1}{2} + -2 -2$ $\partial_t \Gamma_k^{(c\bar{c})} = \cdots + \cdots + \cdots$ -6 -12 +12- 24 → 10¹² terms

Denz, Pawlowski, Reichert 1612.07315

computer tensor algebra

key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations



computer tensor algebra

key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

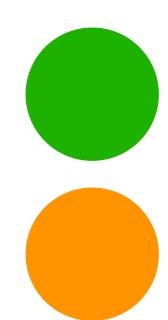
important for scattering amplitudes

computer tensor algebra

key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

important for scattering amplitudes

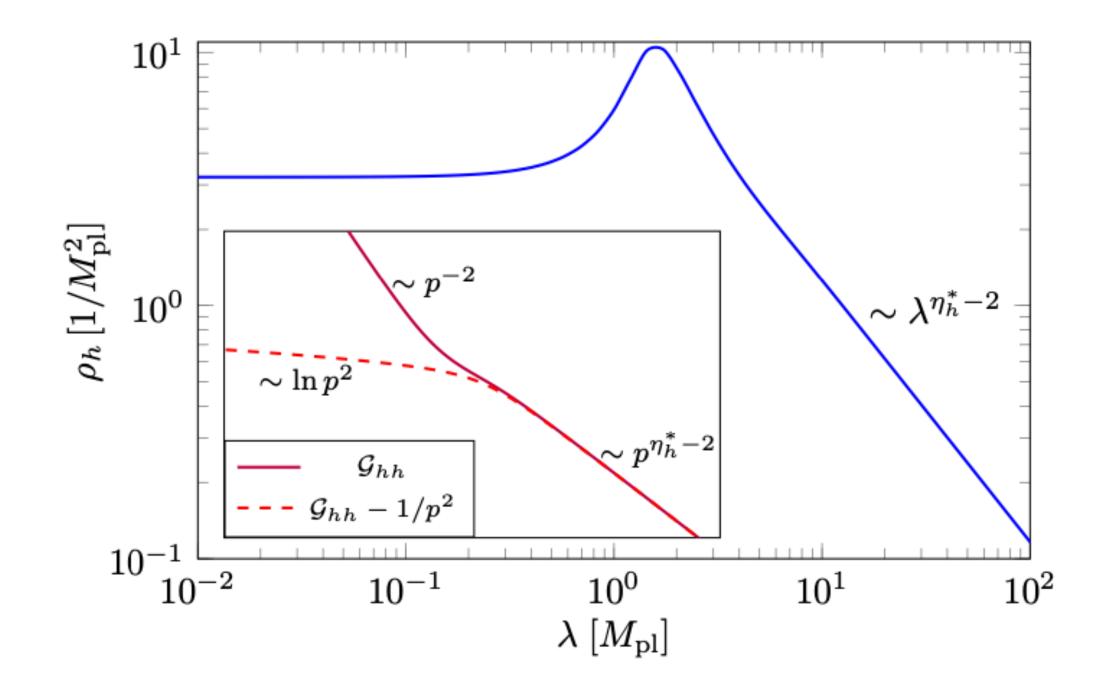


computer tensor algebra

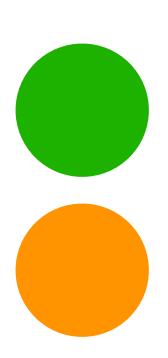
key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

important for scattering amplitudes



Bonanno, Denz, Pawlowski, Reichert 2102.02217 Fehre, Litim, Pawlowski, Reichert 2111.13232



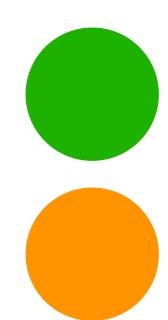
computer tensor algebra

key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

important for scattering amplitudes

Solving integro-differential equations



computer tensor algebra

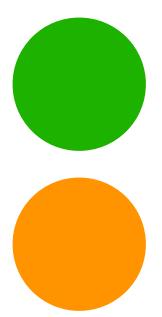
key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

important for scattering amplitudes

Solving integro-differential equations

compute full momentum dependence — amplitudes once again



computer tensor algebra

key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

important for scattering amplitudes

Solving integro-differential equations

compute full momentum dependence — amplitudes once again

computer tensor algebra

key tools: xAct package (MMA), FORM

Wick rotation/Lorentzian computations

important for scattering amplitudes

Solving integro-differential equations

compute full momentum dependence — amplitudes once again

Borchardt, BK 1502.07511, 1603.06726

pseudo-spectral methods for high-precision results

Renate's task list for me:

- "talk about asymptotic safety and the FRG methodology"
- "give a compact review of the state of the art of the subject"
- "assess the future promise and challenges of your technical and computational tools vis-à-vis the physical properties they aim to unlock"
- "keep in mind that not all participants are experts in your speciality"

Renate's task list for me:

- "talk about asymptotic safety and the FRG methodology"
- "give a compact review of the state of the art of the subject"
- "assess the future promise and challenges of your technical and computational tools vis-à-vis the physical properties they aim to unlock"
- "keep in mind that not all participants are experts in your speciality"

