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...or: Quantum Gravity as a Quantum Field Theory
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Running coupling constants

» established experimental fact: coupling constants “run with energy”

* measure scattering cross sections and compare them to theoretical
predictions - coupling “constants” depend on energy scale dictated by
their beta functions - renormalisation group

e Quo vadis, quantum gravity?
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Renormalisation Iin gravity

“standard” renormalisation via perturbation theory

apply to gravity:

1
SGR _ d4 —
167TGN / . gR

mass dimension of coupling is negative, indicates perturbative non-
renormalisability

Gn| = —2

the actual problem: predictivity
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Renormalisation Iin gravity

* due to negative mass dimension, each loop order needs new
counterterms not of the form of the original action

* one loop: GR is on-shell finite! (fails with matter)
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Renormalisation Iin gravity

due to negative mass dimension, each loop order needs new
counterterms not of the form of the original action

one loop: GR is on-shell finite! (fails with matter)
two loops: new free parameter

higher loops: likely more free parameters at every order

— GR is perturbatively non-renormalisable

Is GR non-perturbatively renormalisable?



Asymptotic Safety

* hypothesis: metric gravity (+suitable matter) can be formulated as a QFT
IN a consistent, non-perturbative way



Asymptotic Safety

* hypothesis: metric gravity (+suitable matter) can be formulated as a QFT
IN a consistent, non-perturbative way

¢
0.100 d---_-__-.-\\\\\\\\\\\\\\

0.010
9(g°) 0.001 - — free
104 safe
10°
1076 :
0.001 0.010 0.100 1 10 100 1000




Asymptotic Safety

* hypothesis: metric gravity (+suitable matter) can be formulated as a QFT
IN a consistent, non-perturbative way

e conditions:

e all dimensionless versions of essential couplings approach a finite value
at high energies = fixed point

* only finitely many relevant operators = finitely many measurements
needed to uniquely fix theory



Asymptotic Safety

* hypothesis: metric gravity (+suitable matter) can be formulated as a QFT
IN a consistent, non-perturbative way

e conditions:

e all dimensionless versions of essential couplings approach a finite value
at high energies = fixed point fiien oee
* only finitely many relevant operators = finitely many measurements

needed to uniquely fix theory oredictivity



Asymptotic Safety

* hypothesis: metric gravity (+suitable matter) can be formulated as a QFT
IN a consistent, non-perturbative way

e conditions:

e all dimensionless versions of essential couplings approach a finite value
at high energies = fixed point fiien oee
* only finitely many relevant operators = finitely many measurements

needed to uniquely fix theory oredictivity

How to investigate:
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* hypothesis: metric gravity (+suitable matter) can be formulated as a QFT
IN a consistent, non-perturbative way

e conditions:

e all dimensionless versions of essential couplings approach a finite value
at high energies = fixed point fiien oee
* only finitely many relevant operators = finitely many measurements

needed to uniquely fix theory oredictivity

How to investigate: Functional Renormalisation Group
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Asymptotic Safety via FRG

Wilsonian idea of integrating out modes shell by shell

governed by exact non-perturbative RG equation:
! (2) -
kakrk — §STI' (Fk —I— 9%]{) ]{fak%k Wetterich ‘93

no free lunch: requires approximation

no free dinner: standard implementation uses Euclidean signature
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Asymptotic Safety via FRG

the
(what keeps me up at night)
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the beta functions
(how couplings depend on energy)
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0.

the regulator
(making things finite)

the non-perturbative RG flow
(a fully-dressed one-loop Feynman diagram)
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...or: why I’m not doing string theory (yet)
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Q: What does AS do with the two-loop counterterm?

e approximation:
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Two-loop counterterm

AS tames the
two-loop counterterm!

see also H. Gies, BK, S. Lippoldt, F. Saueressig 1601.01800

A. Baldazzi, K. Falls, Y. Kluth, BK 2312.03831
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inversion

computing the two-point function
tensor contractions

L (2) -
kO, = STr (D +9%) ko,

functional trace

Euclidean vs Lorentzian

beta functions: IDEs
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* computer tensor algebra

key tools: xAct package (MMA), FORM
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computational tools

key tools: xAct package (MMA), FORM .

* Wick rotation/Lorentzian computations

* computer tensor algebra

important for scattering amplitudes

e Solving integro-differential equations

compute full momentum dependence — amplitudes once again

Borchardt, BK 1502.07511, 1603.06726

pseudo-spectral methods for
high-precision results
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