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Challenges of Quantum Gravity (QG)

<> Asearly as in 1916 Einstein* pointed out that

,quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation”

<> After more than 100 years a complete, consistent
quantum theory of gravity is still missing

<> We have a number of interesting but incomplete
research programs
<> string theory
< loop quantum gravity
<> group field theory
<> causal set theory

< noncommuytative geametry — — _ _ _

~~

< ’as;mptotic safety (functional RG flow)
<+ Jattice QFT approaches (CDT, quantum Regge,calc{, ..)
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Challenges of Quantum Gravity (QG)

4 Irrelevant coupling

<> Lack of experimental guidance heorySpace |

<> Conceptual issues: QFT based on Einstein’s GR is L -
perturbatively non-renormalizable in D > 2 dim.* \@

<> But it can be renormalizable in a non-perturbative = s
regime: asymptotic safety conjecture s.weinberg, 1980 %

<> renormalization group flow can lead to a non-
Gaussian UV fixed point where QG becomes scale

invariant (UV complete) ///
ﬂ//

.= NGy R. Ferrero and M. Reuter, Universe 7 (2021)
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*Renormalizable extensions have problems with unitarity



Challenges of Quantum Gravity (QG)

<> Lack of experimental guidance
< Conceptual issues: QFT based on Einstein’s GRis =~~~ » XN
perturbatively non-renormalizable in D > 2 dim.* 71 7 A/ A

<> But it can be renormalizable in a non-perturbative
regime: asymptotic safety conjecture s.weinberg, 1980

0.8

<> renormalization group flow can lead to a non- | | | o
Gaussian UV fixed point where QG becomes scale | N
invariant (UV complete) L 12n§order tsforder
<> Lattice formulation would allow to study a unitary, **' \
non-perturbative, background-independent and 0
diffeomorphism-invariant quantum gravity R B

<> to encode geometry we need a dynamical lattice (DT)

<> UV fixed point should be associated with a 2nd order
phase transition

<> one should be able to reproduce semi-classical
gravity (IR limit)

<~ Imposing causal structure is important: CDTp, J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407

(J. Amjarn, J. Jurkiewicz, R. Loll) - 3D: J. Ambjorn, J. Jurkiewicz, R. Loll, Phys.Rev.Lett. 85 (2000) 924
*Renormalizable extensions have problems with unitarity 4D: J. Ambiorn. J. Jurkiewicz. R. Loll. Nucl.Phvs. B610 (2001) 347
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<> Causal Dynamical Triangulations
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<> Functional Renormalization Group
< RG flow on the lattice (¢p* example)
< RG flow in CDT

<> Conclusions



Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,  Zyg = j Dlg]exp(i Sgrav[g])

using the path integral (Pl) quantization Lor(M) . .
QEW «—— (Lorenzian) geometries

<> One has to give a precise meaing to:

<> what class of geometries g should be
included in the Pl

<~ what (classical) action S,.., should be used

<> which symmetries (GR diffeomorhisms ?)
should be preserved and how to do that

<> how to compute the Pl in practice



Causal Dynamical Triangulations

< CDT approach to QG is via a lattice QFT,  Zy; = J Dlg]exp(i Sgrav[g])
using the path integral (Pl) quantization

<> CDT (quantum) geometries:

<> In classical GR one deals with smooth L ;‘ i .
(pseudo-)Riemannian manifolds Zepr = ) = exp(i Sg|T])

g Lor(M) . .
g Diff(M) *+ (Lorenzian) geometries

causal = T « # symmetries of T
<> But in the Pl one should also include non- triangulations

smooth continuous (Lorenz.) geometries

<> Causality: globally hypebolic spacetimes
which can be foliated into spacial slices of
equal cosmological proper time © A

< We fix the topology of the manifold &
(in here we will use the topology: $3xS?) =

<> Geometries in the Pl are approximated by
piecewise linear simplicial manifolds
(triangulations) built from two kinds of
identical (internally flat) 4-simplices with |  \ 9"
fixed edge lengths (1)
<> As in ordinary lattice QFT: lattice spacing SR
(1;) plays a role of the UV cutoff I which
should be removed in the continuum limit
(ls = 0, Ny > o0) _5-




Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,  Zyg = f Dlg]exp(i Sgrav[g])

using the path integral (Pl) quantization Lor(M)
QEW «—— (Lorenzian) geometries

<> CDT action & diffeom. symmetry:

1
< We use the Einstein-Hilbert action Z g))T = 7 C—exp(L Sz[T])
<> For a piesewise linear simplicial manifold causal  _ Te # symmetries of T

trlangulatlons

triangulation) it takes the form of the
( J J fT Reggef Sgrav = j d*x,/—detg (R — 2A)

Regge action Nuovo Cim. A19 (1961) 558 lé6nG

<> Curvature is defined by deficit angles
around D-2 dim. ,hinges” (triangles in 4D) *% S'mpl'ces\l# 4,1} 4;simpl. # vertices
<> Regge’s formulation uses only geometric (4,1)
invariants (geodesic edge lengths and Sr = kO‘NO +\K4N4 A\(N — 6N 0)
deficit angles) making it coordiante 1/ flf
free and therefore manifestly diffeo- 1/G o (I7= -OLISZ

morphism invariant

<> In CDT one has only two types of bulding %
blocks with fixed edge lenghts thus the
Regge action becomes very simple '



Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,
using the path integral (Pl) quantization

<> CDT computations:

<> In order to investigate the 4D Pl one has
to use Monte Carlo (MC) simulations

<> MC requires Euclidean formulation
(Wick’s rotation)

<> Due to the imposed time foliation
each CDT Lorentzian geometry can be
Wick-rotated to an Euclidean geom.

<> A the level of the Regge action Wick’s
rotation is achieved by an analytical
continuation (@ = —a): general form

of the action Sg is the same in (L) and (E)

<> MC algorithm performs a Markov chain
in the space of triangulations by local
moves* wchich change the geometry
(in 4 dim CDT: 4 moves & 4 anti-moves)

* Example of a (,flip”) move in 2 dim. DT:

ZoG = f D[g] exp(i Sgrav[g])

g Lor(M) . .
g Diff(M) *+ (Lorenzian) geometries

1
Zigh = ) —exp(i SglT])

causal i # symmetries of T

1

triangulations

SgraV:167rG Jd‘*x,/—detg(R—ZA)
M

# 4-simplices I# {4,1} 4-simpl. # vertices
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Phase structure



Phase structure

<> Phase structure:

<> We perform MC simulations with fixed N, 7
The cosmological constant K, is tuned to 04l

N, and we effectively have two coupling

constants: k, and A

<> Four phases (A, B, C4, Cy) of different
generic geometries were discovered

Spherical CDT
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Phase structure

Spherical CDT

<> Phase structure: e G here)
< We perform MC simulations with fixed N,,. O'ghasg Cs (sphere) - ]
The cosmological constant K, is tuned to ™ 3_4; - fsj\ ]

N, and we effectively have two coupling s
constants: k, and A . 02} ¢, \\ e e LY
<> Four phases (A, B, C4, C,) of different 00.0:20' LR - '
generic geometries were discovered e rhase B (sphere) . N3(k*)~ah&§f }/where)
<~ The observable: physical 3-volume of 02f o / R

spatial layers: V5 (t;) o< N3(i) - 13

lattice spacing in spatial directions

. ) , # of tetrahedra at lattice time {
physical proper time ti/='l : lt\

lattice time lattice spacing in time direction

*This is formally not a gauge invariant observable if we insist to keep full 4-
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Phase structure

Spherical CDT

<> Phase structure: g e Ceseperr
<> We perform MC simulations with fixed N,. " (;'?’hasg G (sphere) N ]
The cosmological constant K, is tuned to ™, ~~~__ . ds ]
N, and we effectively have two coupling <;:j§ k
constants: ko and A o Gy \ R
<> Four phases (A, B, C4, C,) of different 00.0?20- 5 wf_e%" _______ _\_\\ / ]
generic geometries were discovered ; / 5 \\\i\\ |
<> The observable: physical 3-volume of o2p N
spatial layers: V5(t;) o< N3 (i) - I3 1 ’ ’ K ’
<> The difference between phases C,s and PRyt P ko P
C, is captured by effective dimensions /’ dy = oo I I/dH _ !
\ I VA
N Wo¢ \

" 0; _TD_ - v l ~ - . 0}
. ( 3(1))
Hausdorff dimension: (N3(1)) = —=77 N 1-L/dn
rescaled average 4
volume profiles i > v
. 1/dy
(scaling for d;; = 4) N,




Phase structure

<> Phase structure:

<> We perform MC simulations with fixed N,.
The cosmological constant K, is tuned to
N, and we effectively have two coupling
constants: k, and A

<> Four phases (A, B, C4, C,) of different
generic geometries were discovered

<> The observable: physical 3-volume of
spatial layers: V5(t;) o< N3 (i) - I3

<> The difference between phases C4s and
Cyp is captured by effective dimensions

<> One observes 1°t order (blue lines) and
2" order (red lines) phase transitions

~
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Semi-classical phase



Semi-classical phase

<> Phase C (de Sitter phase) has good semi-
classical properties !

<> Effective dimensions consistent with d = 4

<> Dynamicaly emerging background geom. <
< (N3(i)) profile of elongated (@ # w,) 4-sphere

. wo\¥/3 :
<> renormalizing l; — I, = [ (EO) one obtains

symmetric S%, i.e., classicaly: (Euclidean)
de Sitter universe (max. sym. space with A>0)

< local (average) curvature* consistent with S$*
<> ~homogenous and isotropic** on large scales
<> Minisuperspace behaviour of the scale factor

<> From quantum fluctuations of N5 (i) one can
recover the effective action of the scale factor

<> The effective action is consistent with the MS
action (spatial homogeneity and isotropy)

<> This was ,,derived” from first principles !

-9-
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-t . N.Klitgaard, R. Loll,
+ _EPJC80(2020) 990

Semi-classical phase

%

<>
<>

* Def. by Quantum Ricci Curvature: N. Klitgaard, R. Loll, PRD 97 (2018) 046008 lfS _
** Homogeneity measures in CDT: R. Loll , A. Silva, PRD 107 (2023) 086013

Phase C . (de Sitter phase) has good semi-
classical properties !

Effective dimensions consistent with d = 4
ynamicaly emerging background geom.

< (N3(i)) profile of elongated (> # wgy) 4-sphere

. wo\*/3 :
< renormalizing l; - [, = I, (EO) one obtains

symmetric S%, i.e., classicaly: (Euclidean)
de Sitter universe (max. sym. space with A>0)

<> local (average) curvature* consistent with S$*
<> ~homogenous and isotropic** on large scales
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Semi-classical phase

< Phase C (de Sitter phase) has good semi-
classical properties !
< Effective dimensions consistent with d = 4
<> Dynamicaly emerging background geom.
< (N3(i)) profile of elongated (& + wy) 4-sphere

. wo\ /3 .
< renormalizing I, - 1, = (30) one obtains

symmetric §%, i.e., classicaly: (Euclidean)
de Sitter universe (max. sym. space with A>0)

< local (average) curvature* consistent with S$*
<> ~homogenous and isotropic** on large scales
<> Minisuperspace behaviour of the scale factor

<> From quantum fluctuations of N5 (i) one can
recover the effective action of the scale factor

. . : : s
< The effective action is consistent with the MS,,

action (spatial homogeneity and isotropy) |

<> This was ,,derived” from first principles !

9-
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Nucl. Phys. B 849 (2011) 144
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Functional Renormalization Group
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Functional Renormalization Group

<> As CDT the FRG is also based on non-petrurbative
QFT framework to quantize gravity

<> Consider a (potenitally o= dim.) space of all effective
actions* of QG (or in practice their truncations)

<> Alternatively one has a space of scale-dependent

Irrelevant coupling

A
I
i
Theory Space |
i
I
|

g

dimensionless couplings related to operators appering _ feleicouping
in the effective actions \@ s

<> Solve RG flow equations (based on [-functions) o
of the couplings with the cutoff scale k 9

2

<> Find RG trajectories linking IR (k — 0) and UV (k — )
fixed points (f = 0) of the RG flow

< Asymptotic Safety conjecture (S. Weinberg)

<> Scale invariance of the UVFP imposes strong
constraints on most operators (couplings)

<> On RG flow trajectories leading from IR to UV fixed 8(a) keutott ~1/1s
points there.is_ onI)_/ a finite numer of relevant - _lsz_zg =B(g) ~ ') (g - g7
operators (finite dim. subspace of relevant couplings) s

<> Even though the values of the couplings in the UV limit 1(g) x |g — g*|~/F' @)
are not small one one can get a predictive theory of T
QG at all scales (nonperturbative renormalizability) ‘

<> There is growing evidence from FRG in favour of AS IR

Close to UVFP:

. -"-",‘ “\.
- - *%, UV
* Effective actions govern the expectation value and quantum fluctuations of the field .



Functional Renormalization Group

1
<> Making contact between FRG and CDT: Sk =x16nGk f d*x,/det g(R — 2Ay) + gauge + ghost

<> In CDT one measures the (minisuperspace) Einstein- >
g

Hilbert effective action

<> Therefore in FRG we take the simplest Einstein-Hilbert

AN

truncation of the (Euclidean) effective actions with two
scale-dependent couplings: Gy, , Ay,

-11-



Functional Renormalization Group

1
<> Making contact between FRG and CDT: Sk =x16nGk f d*x,/det g(R — 2Ay) + gauge + ghost

<> In CDT one measures the (minisuperspace) Einstein-
Hilbert effective action

<> Therefore in FRG we take the simplest Einstein-Hilbert

truncation of the (Euclidean) effective actions with two

scale-dependent couplings: Gy, , Ay,

<> An extremum of the E-H effective action is a de Sitter
universe (the four-sphere S*) with a 4-volume given

by the cosmological constant V, o A}
<> Asin CDT we measure only a behaviour of the scale

factor a(t) (or the 3-volume V3(t)) we will also

consider only minisuperspace fluctuations
<> The (relative) fluctuations are goverened by a

dimensionless effective coupling gg; o G Ay

-11-
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Functional Renormalization Group

1
<> Making contact between FRG and CDT: Sk =x16nGk f d*x,/det g(R — 2Ay) + gauge + ghost

g

<> In CDT one measures the (minisuperspace) Einstein- /

Hilbert effective action /
<> Therefore in FRG we take the simplest Einstein-Hilbert %

/ >
truncation of the (Euclidean) effective actions with two . / : C\ N

scale-dependent couplings: Gy, , Ay, ﬁ _ %
< An extremum of the E-H effective action is a de Sitter x

universe (the four-sphere S*) with a 4-volume given

.= NG, R. Ferrero and M. Reuter, Universe 7 (2021)

by the cosmological constant V, o« Aj> o

<> As in CDT we measure only a behaviour of the scale . o
factor a(t) (or the 3-volume V3(t)) we will also 014 (2)) ks
consider only minisuperspace fluctuations nEgE k> my

<> The (relative) fluctuations are goverened by a -

. . . . 2 = IR
dimensionless effective coupling Jer X Gy . L
kp=10""m, = 10°H, ™y
<> In FRG one has both the IR and the UV fixed points
B H. Kawai and N. Ohta, PRD 107 (2023)

< InthelR (k — 0): G, A, = 0as Gy— Gy = Gy, Ay, = 0 n* =038,  F0*) =— 00132
so one recovers semiclassical universe with V/, — oo
< Inthe UV (k — ): G A —» g" A" ~ 1 as I,

G~ gk > 0,4, > 1*k? 5 0s0V, >0 R Tt Wy
@ > 1]

-11- Ul
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RG flow on the lattice (¢p* example)
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RG flow on the lattice (¢p* example)

< 4D ¢* (lattice) QFT example*

. . . —m
<> 2 dimensionless bare couplings: my, Kk, 0

broken phase
<> for each choice of m,, Kk, one can compute the (@) #0

renormalized mg, kg and the correl. length & IR
0e—

UV fixed point?

< physical correl. length &, = mpl = &1

<~ one can find RG flow where kg, mp = const. , , ,

. .. . ! unbroken phase
% K :

<> there is a phase transition (where ¢ — o so Kn(morg) @ ; (@) =0

following the RG flow trajectory [, — 0) . K

L=(3,0)" +med? + ko

kg % Iy(p; = 0;myg, ko)

kcutoff ~1/ls
B o) e,
—Li =2 = o) ~ B/(5) g — K))

Ls (o) o |icg — iy ~H/F"0<0)

K
\ UV 0

.
R
=Ry )

*Unfortunately there is no UV fixed point in ¢p*  -12-



*Unfortunately there is no UV fixed point in ¢*

RG flow on the lattice (¢p* example)

< 4D ¢* (lattice) QFT example*

<> 2 dimensionless bare couplings: my, Kk,

<> for each choice of m,, k,one can compute the
renormalized mg, kg and the correl. length &

< physical correl. length &, = mpl = &1

< one can find RG flow where kp, mp = const.
<> there is a phase transition (where ¢ — o so

following the RG flow trajectory [, — 0)

<> The UV limit

<> we approach the phase transition (¢ — )
keeping the renormalized coupling kg fixed

<> in order to do that we have to tune the bare

coupling K,

< The IR limit

<> we approach the phase transition (¢ — )
keeping the bare coupling k, fixed

<> we cross the kg = const RG trajectories in the

. . ir
direction of kp — Kp
“12-

unbroken phase

(¢)=0

Kp" Kg KIII{(2)

B (xo)

kcutoff ~1/ls
dK o .
—ly——= B(Ko) = B'(xg) (Ko — Ky)
dl

Ls (o) o |icg — iy ~H/F"0<0)

K
\ UV 0

.
R
=Ry )



RG flow in CDT
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RG flow in CDT

<> 4D CDT (lattice) QFT

<> 3 dimensionless bare couplings: K,, k,, A

<> The bare cosmol. const. Ky is related to lattice
volume N, : K, —» K{™t(ko, A) when N, — o

<> One can argue that inside phase C,s the correl.

length: & « Ni/4

<> We assume that the CDT MS effective action is
consistent with the E-H truncation in FRG

<> This implies relations between the effective
couplings

<> The UV limit

< we will approach the K; (kg, A) critical surface
(¢ — o0) tuning the bare couplings k,, 4 such
that the effective coupling GA stays fixed

<> we associate it with the UV limit of FRG
<> The IR limit

< we will approach the K; (kg, A) critical surface
(¢ — o0) keeping the bare couplings k,, 4 fixed

<> we associate it with the IR limit of FRG_13_




RG flow in CDT

<> 4D CDT (lattice) QFT

Ny'loc g4
<> 3dimensionless bare couplings: K,, k,, A + e
<> The bare cosmol. const. Ky is related to lattice
volume N, : K, — K" (ko, A) when N, — o
<> One can argue that inside phase Cy the correl.

length: & < Ni/‘L

<> We assume that the CDT MS effective action is
consistent with the E-H truncation in FRG

<> This implies relations between the effective
couplings

<> The UV limit

< we will approach the K; (kg, A) critical surface
(¢ — o0) tuning the bare couplings k,, 4 such

that the effective Coup/ing GA stays fiX@d n is the geodesic distance between the two points in the case of DT
n
< we associate it with the UV limit of FRG G (n) o exp [_W]' n > (N, )M/
.. | J.
<> The IR limit ¢ »

< we will approach the K; (kg, A) critical surface
(¢ — o0) keeping the bare couplings k,, 4 fixed

<> we associate it with the IR limit of FRG_13_



RG flow in CDT

<> 4D CDT (lattice) QFT

¢
¢

<>

3 dimensionless bare couplings: K,, kg, A

The bare cosmol. const. K, is related to lattice
volume N, : K, — KT (ko, A) when N, — oo
One can argue that inside phase C,s the correl.
length: & « Ni/4

We assume that the CDT MS effective action is
consistent with the E-H truncation in FRG

This implies relations between the effective
couplings

13-
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RG flow in CDT

<> 4D CDT (lattice) QFT 1
NT —4
<> 3dimensionless bare couplings: K,, k,, A +od

<> The bare cosmol. const. K,is related to lattice
volume N, : K, — K{" (ko, A) when N, — o

<> One can argue that inside phase C,s the correl.
length: & « N1/4

<> We assume that the CDT MS effective action is
consistent with the E-H truncation in FRG

(N;(i+1) - N; (@)
<~ This implies relations between the effective S= T’“’Z( NG + uN3(1)1/3>
couplings =, c - - - '
imi (k>0 Gl > g2 ! W
< The UV limit | Goo gk2 A, —>A*k2J 1
< we will approach the Kfm@o, A)critical surface Sk = T G f d*x/det g(R — 2/\)

(¢ — o0) tuning the bare couplings k,, 4 such
that the effective coupling G\ stays fixed

< we associate it W/t/)-the UV linit ewf-l--'R--C-LI 1 - _f_(_&;;z_ ;; ‘I
k—-0: G, A, -0 T \) % bibk
<> The IR limit , Gk—> GONCI;(N,IZ,C_)O' 4 _@_af’____'

(¢ — o0) keeping the bare couplings k,, 4 fixed ~ |\ 4/3
< we associate it with the IR limit of FRG_13- I
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RG flow in CDT

< The IR limit

< we approach the K™ (ky, A) critical surface

<> for fixed k,, A we have T', @ = const.> 0
&> from FRG fork — 0: Gy, — Gy = Gy = 43,

<>

<>

(¢ = oo, i.e. Ny = ) keeping the bare
couplings kg, 4 fixed

therefore in CDT lattice spacing remains
constant : l; ~ ¥p;

as N, — o and l; > 0 the volume of the CDT

universe V, — o

this is consistent with FRG as for k — 0 :
Ay = 0 soV, o< Ay > o

CDT (relative) fluctuations vanish and one

reproduces (semi) classical spacetime

this is also consistent with FRG where
GkAk - 0
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RG flow in CDT

< The UV limit

{ we approach the KT (ky, A) critical surface
(¢ = oo, i.e. Ny = ) tuning the bare
couplings ky, 4 such that the effective
G\, = g*A" = const

< from FRG: G,— g*k~?

<> thereforein CDT: I ~ k™1 = 0

< (relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko(N,),A(N,)) parametrized by N,

<> It is only possible by approaching the
Cys — A phase transition line
< we fix A (A = 0)* and change only k,
<> one can compute critical exponent: y /4v,,
related to scaling of T' @? at the transition

< v/4vy = 054 £ 0.04 > 1/2 s0 it may be
possible to approach the UV limit
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RG flow in CDT

< The UV limit

< we approach the K; (k,, A) critical surface
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G\, = g*A" = const
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< thereforein CDT: I ~ k™1 —
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<> This requires finding RG flow trajectories
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<> It is only possible by approaching the
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< we fix A (A = 0) and change only k,
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related to scaling of T' @? at the transition

< y/4vy, = 054+ 0.04 > 1/2 so it may be
possible to approach the UV limit
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RG flow in CDT

< The UV limit

< we approach the K; (k,, A) critical surface
(¢ = oo, i.e. Ny = ) tuning the bare
couplings ky, 4 such that the effective
G\, = g*A" = const

< from FRG: Gy— g*k™2 -

< thereforein CDT: I ~ k™1 —

< (relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko(N,), A(N,)) parametrized by N,

<> It is only possible by approaching the
Cazs — A phase transition line
< we fix A (A = 0) and change only k
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RG flow in CDT woo-s -

Mw
<> The UV limit
< we approach the K; (k,, A) critical surface
(¢ = o0, i.e. Ny = 00) tuning the bare ,
couplings ko, 4 such that the effective 1000|-
G\, = g 1" = const '
< from FRG: Gy— g*k™2 -

<> therefore in CDT: lg ~ k™1 —

< (relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko (N,), A(N4)) parametrized by N, o o o o o o o o e e e e _

<~ Itis only possible by approaching the ! F(ko(N4) A(N4))@?(ko(Ns), A(N,)) o N, |

C4s — A phase transition line ~  ~ "7 77 T @2pava054t008
< we fix A (A = 0) and change only k, Fw?(ko™)

<~ one can compute critical exponent: y [4v,,, 2000

related to scaling of T' @? at the transition

e 40k

[ e 80k
1500 [
e 160k

e 200k
[ o 480k
500 -

e 720k

1000 -

500 -
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RG flow in CDT woo-s -

Mw
<> The UV limit 2000} o 40K
< we approach the K, (k, A) critical surface ool * 80k
(¢ = oo, i.e. Ny = o0) tuning the bare ? . 160k

couplings ky, 4 such that the effective 1000 - . 200k

G\, = g 1" = const
- from FRG: G- g*k™? -
< thereforein CDT: I ~ k™1 —

s00 | e 480k

e 720k

< (relative) fluctuations stay constant Z(kuv o )) o I\fy J4vyy 3 1 /E
<> This requires finding RG flow trajectories 4
(ko (N,), A(N4)) parametrized by N, o o o o o e o o o e e e e o \
<~ Itis only possible by approaching the ! F(ko(N4) A(N4))@?(ko(Ns), A(N,)) o N, |
C,s — A phase transition line ~—~  ~ "~~~ TmEmEEEEEET
< we fix A (A = 0) and change only k,

-1
Ny KNy Ky QL) — e ¢
\ 0 4) =Ry TSI o T
N

1/4vyp
4

<> one can compute critical exponent: y /4v,,,
related to scaling of T 62? at the transition

> y/4vy, = 0.54 + 0.04 > 1/2 so it may be
possible to approach the UV limit

C .
ko(N4)=k6w—NlW :
4

kg constant along x,(NV,)
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Conclusions

<> CDT is a lattice QFT and a promising candidate for a UV complete theory of QG
formulated in a fully non-perturbative and background independent way

<> One can study dynamically emerging background geometry and quantum fluctuations
<> CDT has a rich phase structure including the semi-classical phase Cys

< correct IR limit of the scale factor (spatial volume) consistent with (Eucl.) de Sitter space

<> quantum fluctuations of the scale factor are well described by the minisuperspace action

<> CDT can provide independent tests of the asymptotic safety conjecture in a setting
not dependent on FRG truncations

<> One can make contact with FRG approach to QG by defining RG flow in CDT and
searching for the IR and UV fixed points

<> The results for the UV continuum limit seem promising but not conclusive

<> Open problems and questions:
< the (potential) UV limit of CDT is obtained at the 15t order phase transition (non-standard)

<~ this is possible because we observe finite-size scaling and thus the correl. length ¢ o« N,*

<> this is actually a new (generic ?) feature of quantum gravity, where one can define
correlations between fluctuating space-time points separated by a geodesic distance
(not as in ordinary lattice QFTs, where ngce-time is fixed)



Thank You !
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