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² As early as in 1916 Einstein* pointed out that 
„quantum theory would have to modify not only 
Maxwellian electrodynamics, but also the new 
theory of gravitation”

² After more than 100 years a complete, consistent 
quantum theory of gravity is still missing

² We have a number of interesting but incomplete 
research programs
² string theory 
² loop quantum gravity
² group field theory
² causal set theory
² noncommutative geometry
² asymptotic safety (functional RG flow)
² lattice QFT approaches (CDT, quantum Regge calc., …)
² …
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* Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688 

A. Einstein triangulation by J. Bryan

Challenges of Quantum Gravity (QG)



² Lack of experimental guidance 
² Conceptual issues: QFT based on Einstein’s GR is 

perturbatively non-renormalizable in D > 2 dim.* 
² But it can be renormalizable in a non-perturbative 

regime: asymptotic safety conjecture
² renormalization group flow can lead to a non-

Gaussian UV fixed point where QG becomes scale 
invariant (UV complete)

² Lattice formulation would allow to study a unitary, 
non-perturbative, background-independent and 
diffeomorphism-invariant  quantum gravity
² to encode geometry we need a dynamical lattice (DT) 
² UV fixed point should be associated with a 2nd order 

phase transition
² one should be able to reproduce semi-classical 

gravity (IR limit)  

² Imposing causal structure is important: CDT 
(J. Amjørn, J. Jurkiewicz, R. Loll) -2-

Challenges of Quantum Gravity (QG)

S. Weinberg, 1980

*Renormalizable extensions have problems with unitarity
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Challenges of Quantum Gravity (QG)

1st   order2nd order

2D:   J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407

3D:   J. Ambjorn, J. Jurkiewicz, R. Loll, Phys.Rev.Lett. 85 (2000) 924

4D:   J. Ambjorn, J. Jurkiewicz, R. Loll, Nucl.Phys. B610 (2001) 347

�0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

A

B

Cb

C

Quadruple point

�

0

*Renormalizable extensions have problems with unitarity

S. Weinberg, 1980

² Lack of experimental guidance 
² Conceptual issues: QFT based on Einstein’s GR is 

perturbatively non-renormalizable in D > 2 dim.*
² But it can be renormalizable in a non-perturbative 

regime: asymptotic safety conjecture
² renormalization group flow can lead to a non-

Gaussian UV fixed point where QG becomes scale 
invariant (UV complete)

² Lattice formulation would allow to study a unitary, 
non-perturbative, background-independent and 
diffeomorphism-invariant  quantum gravity
² to encode geometry we need a dynamical lattice (DT)
² UV fixed point should be associated with a 2nd order 

phase transition
² one should be able to reproduce semi-classical 

gravity (IR limit)  

² Imposing causal structure is important: CDT 
(J. Amjørn, J. Jurkiewicz, R. Loll) 



Outline
² Causal Dynamical Triangulations 
² Phase structure
² Semi-classical phase
² Functional Renormalization Group
² RG flow on the lattice (𝜙4 example)
² RG flow in CDT
² Conclusions
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Causal Dynamical Triangulations
² CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization
² One has to give a precise meaing to:

² what class of geometries g should be 
included  in the PI

² what (classical) action 𝑆!"#$	should be used
² which symmetries (GR diffeomorhisms ?) 

should be preserved and how to do that
² how to compute the PI in practice
² (how to include matter fields)  

𝑍!" = #

#∈ %&' (
)*++ (

𝐷 𝑔 exp(𝑖	𝑆,-./[𝑔])

(Lorenzian) geometries



Causal Dynamical Triangulations
² CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization
² CDT (quantum) geometries:

² In classical GR one deals with smooth 
(pseudo-)Riemannian manifolds

² But in the PI one should also include non-
smooth continuous (Lorenz.) geometries

² Causality: globally hypebolic spacetimes 
which can be foliated into spacial slices of 
equal cosmological proper time

² We fix the topology of the manifold 
(in here we will use the topology: S3xS1)

² Geometries in the PI are approximated by 
piecewise linear simplicial manifolds 
(triangulations) built from two kinds of 
identical (internally flat) 4-simplices with 
fixed edge lengths (𝑙#)

² As in ordinary lattice QFT: lattice spacing 
(𝑙#) plays a role of the UV cutoff 𝑙#$% which 
should be removed in the continuum limit 
(𝑙# → 0, 𝑁& → ∞) 

space

tim
e
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𝑍!" = #

#∈ %&' (
)*++ (

𝐷 𝑔 exp(𝑖	𝑆,-./[𝑔])

𝑍0)1
(%) =0

1

1
𝐶1
exp(𝑖	𝑆4[𝑇])

causal 
triangulations

(Lorenzian) geometries

# symmetries of T
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Causal Dynamical Triangulations
² CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization
² CDT action & diffeom. symmetry:

² We use the Einstein-Hilbert action 
² For a piesewise linear simplicial manifold 

(triangulation) it takes the form of the 
Regge action

² Curvature is defined by deficit angles 
around D-2 dim. „hinges” (triangles in 4D)

² Regge’s formulation uses only geometric 
invariants (geodesic edge lengths and 
deficit angles) making it coordiante 
free and therefore manifestly diffeo-
morphism invariant

² In CDT one has only two types of bulding 
blocks with fixed edge lenghts thus the 
Regge action becomes very simple

1/G L a (lt2 = -als2)

𝑍!" = #

#∈ %&' (
)*++ (

𝐷 𝑔 exp(𝑖	𝑆,-./[𝑔])

𝑍0)1
(%) =0

1

1
𝐶1
exp(𝑖	𝑆4[𝑇])

𝑆,-./ =
1

16𝜋𝐺	 #
(

𝑑5𝑥 −det 𝑔 𝑅 − 2Λ	

causal 
triangulations

𝑆4 = −𝑘6𝑁6 + 𝐾5𝑁5 + Δ 𝑁5
5,8 − 6𝑁6

(Lorenzian) geometries

# 4-simplices # vertices# {4,1} 4-simpl.

T. Regge, 
Nuovo Cim. A19 (1961) 558

# symmetries of T



𝑍0)1
(9) =0

1

1
𝐶1
exp(−	𝑆4[𝑇])
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Causal Dynamical Triangulations
² CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization
² CDT computations:

² In order to investigate the 4D PI one has 
to use Monte Carlo (MC) simulations

² MC requires Euclidean formulation 
(Wick’s rotation)

² Due to the imposed time foliation 
each CDT Lorentzian geometry can be 
Wick-rotated to an Euclidean geom.

² A the level of the Regge action Wick’s 
rotation is achieved by an analytical 
continuation (𝛼 → −α):  general form 
of the action SR is the same in (L) and (E)

² MC algorithm performs a Markov chain 
in the space of triangulations by local
moves* wchich change the geometry 
(in 4 dim CDT: 4 moves & 4 anti-moves)

1/G L a (lt2 = als2)

𝑍!" = #

#∈ %&' (
)*++ (

𝐷 𝑔 exp(𝑖	𝑆,-./[𝑔])

𝑍0)1
(%) =0

1

1
𝐶1
exp(𝑖	𝑆4[𝑇])

causal 
triangulations

# symmetries of T

𝑆4 = −𝑘6𝑁6 + 𝐾5𝑁5 + Δ 𝑁5
5,8 − 6𝑁6

𝑆,-./ =
1

16𝜋𝐺	 #
(

𝑑5𝑥 −det 𝑔 𝑅 − 2Λ	

(Lorenzian) geometries

# 4-simplices # vertices# {4,1} 4-simpl.

𝛼 → −α

* Example of a („flip”) move in 2 dim. DT:



Phase structure
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𝑆4 = −𝑘6𝑁6 + 𝐾5𝑁5 + Δ 𝑁5
5,8 − 6𝑁6

² Phase structure:
² We perform MC simulations with fixed N4 

The cosmological constant K4 is tuned to 
N4 and we effectively have two coupling 
constants: k0 and Δ

² Four phases (A, B, CdS, Cb) of different 
generic geometries were discovered

² The observable:  physical 3-volume of 
spatial layers: 𝑉' 𝑡( ∝ 	𝑁'(𝑖) ⋅ 𝑙#'

² The difference between phases CdS and 
Cb is captured by effective dimensions

² One observes 1st order (blue lines) and 
2nd order (red lines) phase transitions



² Phase structure:
² We perform MC simulations with fixed N4. 

The cosmological constant K4 is tuned to 
N4 and we effectively have two coupling 
constants: k0 and Δ

² Four phases (A, B, CdS, Cb) of different 
generic geometries were discovered

² The observable:  physical 3-volume of 
spatial layers: 𝑉' 𝑡( ∝ 	𝑁'(𝑖) ⋅ 𝑙#'

² The difference between phases CdS and 
Cb is captured by effective dimensions

² One observes 1st order (blue lines) and 
2nd order (red lines) phase transitions

Phase structure

* This is formally not a gauge invariant observable if we insist to keep full 4-d diffeo. symetry
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lattice spacing in time direction
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² Phase structure:

² We perform MC simulations with fixed N4. 
The cosmological constant K4 is tuned to 
N4 and we effectively have two coupling 
constants: k0 and Δ

² Four phases (A, B, CdS, Cb) of different 
generic geometries were discovered

² The observable:  physical 3-volume of 
spatial layers: 𝑉' 𝑡( ∝ 	𝑁'(𝑖) ⋅ 𝑙#'

² The difference between phases CdS and 
Cb is captured by effective dimensions

² One observes 1st order (blue lines) and 
2nd order (red lines) phase transitions

Phase structure

Hausdorff dimension:
rescaled average 
volume profiles

(scaling for dH  = 4)
 

𝑁'(𝑖) →
𝑁'(𝑖)
𝑁&
%$%/*!

𝑖 →
𝑖

𝑁&
%/*!

dH  = 4dH  = ∞

0 20 40 60 80 k

1000

2000

3000

4000

5000
N3(k)

Phase CdS (sphere)

0 20 40 60 80 k
2000

4000

6000

8000

10000

12000
N3(k)

Phase Cb (sphere)

-8-



² Phase structure:
² We perform MC simulations with fixed N4. 

The cosmological constant K4 is tuned to 
N4 and we effectively have two coupling 
constants: k0 and Δ

² Four phases (A, B, CdS, Cb) of different 
generic geometries were discovered

² The observable:  physical 3-volume of 
spatial layers: 𝑉' 𝑡( ∝ 	𝑁'(𝑖) ⋅ 𝑙#'
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Semi-classical phase



² Phase CdS (de Sitter phase) has good semi-
classical properties !

² Effective dimensions consistent with d = 4
² Dynamicaly emerging background geom.

² 𝑁'(𝑖) 	profile of elongated ('𝜔 ≠ 𝜔+) 4-sphere

² renormalizing 𝑙, → 𝑙, = 𝑙#
-"
.-

&/'
one obtains 

symmetric S4, i.e., classicaly: (Euclidean) 
de Sitter universe (max. sym. space with 𝛬>0)

² local (average) curvature* consistent with S4 
² ~homogenous and isotropic** on large scales

² Minisuperspace behaviour of the scale factor
² From quantum fluctuations of 𝑁'(𝑖) one can 

recover the effective action of the scale factor 
²  The effective action is consistent with the MS  

action  (spatial homogeneity and isotropy)

² This was „derived” from first principles !
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* Def. by Quantum Ricci Curvature: N. Klitgaard, R. Loll, PRD 97 (2018) 046008
** Homogeneity measures in CDT: R. Loll , A. Silva, PRD 107 (2023) 086013

Semi-classical phase
² Phase CdS (de Sitter phase) has good semi-

classical properties !
² Effective dimensions consistent with d = 4
² Dynamicaly emerging background geom.

² 𝑁'(𝑖) 	profile of elongated ('𝜔 ≠ 𝜔+) 4-sphere

² renormalizing 𝑙, → 𝑙, = 𝑙#
-"
.-

&/'
one obtains 

symmetric S4, i.e., classicaly: (Euclidean) 
de Sitter universe (max. sym. space with 𝛬>0)

² local (average) curvature* consistent with S4 
² ~homogenous and isotropic** on large scales

² Minisuperspace behaviour of the scale factor
² From quantum fluctuations of 𝑁'(𝑖) one can 

recover the effective action of the scale factor 
²  The effective action is consistent with the MS  

action  (spatial homogeneity and isotropy)

² This was „derived” from first principles ! 𝑑𝑠/ = 𝑑𝑡/ + 𝑎/ 𝑡 𝑑Ω'/

N. Klitgaard, R. Loll, 
EPJ C 80 (2020) 990

𝑉# 𝑡 ∝ 𝑎#(𝑡)

𝑡 = 𝑖	𝑙%

⟨𝑉'(𝑡()⟩ =
3
4
𝑉&

1
𝜔+𝑉&

%/& cos
' 𝑡(
𝜔+𝑉&

%/& 	

𝑉&(𝑡') = 𝑁& 𝑖 𝑙(&

Λ is fixing V!

𝑉) = 𝑙	()
𝜔+
.𝜔

)/&
𝑁) ∝

1
Λ-𝜔+ =

3
8𝜋-

./)

𝑆$% = −
1

16𝜋𝐺
1𝑑&𝑥 det	𝑔 𝑅 − 2Λ

𝑁'(𝑖) =
3
4𝑁&

1

'𝜔𝑁&
%/& cos

' 𝑖

'𝜔𝑁&
%/& 	



1	/
.𝜔
𝜔+

)/&
?Γ	𝑙	(-

² Phase CdS (de Sitter phase) has good semi-
classical properties !

² Effective dimensions consistent with d = 4
² Dynamicaly emerging background geom.

² 𝑁'(𝑖) 	profile of elongated ('𝜔 ≠ 𝜔+) 4-sphere

² renormalizing 𝑙, → 𝑙, = 𝑙#
-"
.-

&/'
one obtains 

symmetric S4, i.e., classicaly: (Euclidean) 
de Sitter universe (max. sym. space with 𝛬>0)

² local (average) curvature* consistent with S4 
² ~homogenous and isotropic** on large scales

² Minisuperspace behaviour of the scale factor
² From quantum fluctuations of 𝑁'(𝑖) one can 

recover the effective action of the scale factor 
²  The effective action is consistent with the MS  

action  (spatial homogeneity and isotropy)

² This was „derived” from first principles !
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Semi-classical phase

𝑆'( = −
1

24𝜋𝐺
1𝑑𝑡

𝑉̇#(𝑡))	
𝑉#(𝑡)

+ 𝜇*𝑉# 𝑡 +/#

24𝜋𝐺 =

𝑉# 𝑡 ∝ 𝑎#(𝑡)
𝑑𝑠/ = 𝑑𝑡/ + 𝑎/ 𝑡 𝑑Ω'/

𝑆$% = −
1

16𝜋𝐺
1𝑑&𝑥 det	𝑔 𝑅 − 2Λ

agrees with 
Hartle–Hawking 

„noboundary” proposal

Nucl. Phys. B 849 (2011) 144

(N
3(
k)

-
〈N

3(
k)
〉)2



k

Spherical

𝑆 =
1
=Γ
?
'

(𝑁& 𝑖 + 1 − 𝑁& 𝑖 )-	
𝑁& 𝑖

+ E𝜇𝑁& 𝑖 ./&

Λ is fixing V!

𝑉) = 𝑙	()
𝜔+
.𝜔

)/&
𝑁)

𝜇+ = 9 2𝜋-	 -/&

∝
1
Λ-
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Functional Renormalization Group



−𝑙(
𝑑𝑔
𝑑𝑙(

= 𝛽 𝑔 ≈ 𝛽′(g∗)(𝑔 − 𝑔∗)
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Functional Renormalization Group

Close to UVFP:

𝑘012344	~1/𝑙(

𝑔

𝛽(𝑔)

𝑔∗

𝑙( 𝑔 ∝ 𝑔 − 𝑔∗ 5./6!(8∗)

² As CDT the FRG is also based on non-petrurbative 
QFT framework to quantize gravity
² Consider a (potenitally ∞ dim.) space of all effective 

actions* of QG (or in practice their truncations)
² Alternatively one has a space of scale-dependent 

dimensionless couplings related to operators appering 
in the effective actions

² Solve RG flow equations (based on 𝛽-functions) 
of the couplings with the cutoff scale k

² Find RG trajectories linking IR (𝑘 → 0) and UV (𝑘 → ∞) 
fixed points (𝛽 = 0)	of the RG flow

² Asymptotic Safety conjecture (S. Weinberg)
² Scale invariance of the UVFP imposes strong 

constraints on most operators (couplings)
² On RG flow trajectories leading from IR to UV fixed 

points there is only a finite numer of relevant 
operators (finite dim. subspace of relevant couplings) 

² Even though the values of the couplings in the UV limit 
are not small one one can get a predictive theory of 
QG at all scales (nonperturbative renormalizability)

² There is growing evidence from FRG in favour of AS  

* Effective actions govern the expectation value and quantum fluctuations of the field 



² Making contact between FRG and CDT:
² In CDT one measures the (minisuperspace) Einstein-

Hilbert effective action 
² Therefore in FRG we take the simplest Einstein-Hilbert 

truncation of the (Euclidean) effective actions with two 
scale-dependent couplings: 𝐺O	, 𝛬O

² An extremum of the E-H effective action is a de Sitter 
universe (the four-sphere S4) with a 4-volume given 
by the cosmological constant 𝑉& ∝ 𝛬O$/

² As in CDT we measure only a behaviour of the scale 
factor 𝑎(𝑡) (or the 3-volume 𝑉'(𝑡)) we will also 
consider only minisuperspace fluctuations

² The (relative) fluctuations are goverened by a 
dimensionless effective coupling 𝑔PQ/ ∝ 	𝐺O𝛬O	

² In FRG one has both the IR and the UV fixed points
² In the IR (𝑘 → 0):	𝐺O𝛬O → 0 as 𝐺O→ 𝐺+ ≈ 𝐺R, 𝛬O → 0

so one recovers semiclassical universe with 𝑉& → ∞
² In the UV (𝑘 → ∞):	𝐺O𝛬O → 𝑔∗𝜆∗ ∼ 1 as

𝐺O → 𝑔∗𝑘$/ → 0, 𝛬O → 𝜆∗𝑘/ → ∞ so 𝑉& → 0
-11-

Functional Renormalization Group
S- = −

1
16𝜋𝐺-

1𝑑&𝑥 det	𝑔 𝑅 − 2Λ. + 𝑔𝑎𝑢𝑔𝑒 + 𝑔ℎ𝑜𝑠𝑡
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Functional Renormalization Group
S- = −

1
16𝜋𝐺-

1𝑑&𝑥 det	𝑔 𝑅 − 2Λ. + 𝑔𝑎𝑢𝑔𝑒 + 𝑔ℎ𝑜𝑠𝑡

𝑉#(𝑡) 	=
3
4
𝑉&

1

𝜔*𝑉&
+/& cos

# 𝑡

𝜔*𝑉&
+/& 	

𝑆'( =
1

24𝜋𝐺-
1𝑑𝑡

𝑉̇#(𝑡))	
𝑉#(𝑡)

+ 𝜇*𝑉# 𝑡 +/#

T𝑑𝑡	𝑉&(𝑡) = 𝑉) ∝ 𝛬:5-

𝑣# ≡ 𝑉#/𝑉&
#/& 𝑠 ≡ 𝑡/𝑉&

+/&

𝑆'( =
6

4	𝐺-Λ-
1𝑑𝑠

𝑣̇#(𝑡))	
𝑣#(𝑡)

+ 𝜇*𝑣# 𝑡 +/#

𝑣#(𝑡) 	=
3
4
1
𝜔*

cos#
𝑡
𝜔*

	

T𝑑𝑠	𝑣(𝑠) = 1
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Functional Renormalization Group
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by the cosmological constant 𝑉& ∝ 𝛬O$/
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² In FRG one has both the IR and the UV fixed points  
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RG flow on the lattice (𝜙4 example)
² 4D 𝜙4 (lattice) QFT example*

² 2 dimensionless bare couplings: m0
 , 𝜅0 

² for each choice of m0
 , 𝜅0 one can compute the 

renormalized mR
 , 𝜅R and the correl. length 𝜉

² physical correl. length 𝜉XY = 𝑚Z
$% = 𝜉	𝑙#

² one can find RG flow where 𝜅Z, 𝑚Z = 𝑐𝑜𝑛𝑠𝑡.
² there is a phase transition (where 𝜉 → ∞	so 

following the RG flow trajectory 𝑙# → 0)

² The UV limit
² we approach the phase transition (𝜉 → ∞) 

keeping the renormalized coupling 𝜅R fixed
² in order to do that we have to tune the bare 

coupling 𝜅0

² The IR limit
² we approach the phase transition (𝜉 → ∞) 

keeping the bare coupling 𝜅0 fixed
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∝ 𝜉5.

Cb
dS

² 4D CDT (lattice) QFT 
² 3 dimensionless bare couplings: K4 , k0

 , 𝛥
² The bare cosmol. const. K4 is related to lattice 

volume 𝑁& : 𝐾& → 𝐾&`[(, 𝑘+, Δ  when 𝑁& → ∞
² One can argue that inside phase CdS the correl. 

length: 𝜉 ∝ 𝑁&
%/&

² We assume that the CDT MS effective action is 
consistent with the E-H truncation in FRG 

² This implies relations between the effective 
couplings 

² The UV limit
² we will approach the 𝐾&∗ 𝑘+, Δ  critical surface 

(𝜉 → ∞) tuning the bare couplings k0 , 𝛥 such 
that the effective coupling 𝐺Λ	stays fixed

² we associate it with the UV limit of FRG

² The IR limit
² we will approach the 𝐾&∗ 𝑘+, Δ  critical surface 

(𝜉 → ∞) keeping the bare couplings k0 , 𝛥 fixed
² we associate it with the IR limit of FRG
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² The IR limit 

² we approach the 𝐾&`[(, 𝑘+, Δ  critical surface 
(𝜉 → ∞, i.e. 𝑁& → ∞) keeping the bare 
couplings k0 , 𝛥 fixed

² for fixed k0 , Δ we have YΓ , '𝜔 = 𝑐𝑜𝑛𝑠𝑡. > 0
² from FRG for 𝑘 → 0 : 𝐺O → 𝐺+ ≈ 𝐺R = ℓhi/

²  therefore in CDT lattice spacing remains 
constant : 𝑙# ∼ ℓhi

² as 𝑁& → ∞	and 𝑙# > 0 the volume of the CDT 
universe 𝑉& → ∞

² this is consistent with FRG as for 𝑘 → 0	: 
ΛO → 0	 so 𝑉& ∝ ΛO$/ → ∞

² CDT (relative) fluctuations vanish and one 
reproduces (semi) classical spacetime

² this is also consistent with FRG where 
𝐺O𝛬O → 0 
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|𝛿𝑁#(𝑖)| = \Γ+/)𝑁&
+/) 	F

𝑖
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+/&	

|𝛿𝑉# 𝑡2 |
⟨𝑉#(𝑡2)⟩	
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² The UV limit 

² we approach the 𝐾&`[(, 𝑘+, Δ  critical surface 
(𝜉 → ∞, i.e. 𝑁& → ∞) tuning the bare 
couplings k0 , 𝛥 such that the effective 
𝐺OΛO = 𝑔∗𝜆∗ = 𝑐𝑜𝑛𝑠𝑡

² from FRG: 𝐺O→ 𝑔∗𝑘$/ → 0
² therefore in CDT :  𝑙# ∼ 𝑘$% → 0
² (relative) fluctuations stay constant

² This requires finding RG flow trajectories
𝑘a 𝑁b , Δ 𝑁b  parametrized by N4

² It is only possible by approaching the
𝐶cd − 𝐴 phase transition line
² we fix Δ (Δ = 0)* and change only 𝑘+	
² one can compute critical exponent:  𝛾/4𝜈jk 

related to scaling of YΓ '𝜔/ at the transition
² 𝛾/4𝜈jk = 0.54 ± 0.04	 ≥ 1/2	so it may be 

possible to approach the UV limit
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Conclusions
² CDT is a lattice QFT and a promising candidate for a UV complete theory of QG

formulated in a fully non-perturbative and background independent way
² One can study dynamically emerging background geometry and quantum fluctuations
² CDT has a rich phase structure including the semi-classical phase CdS 

² correct IR limit of the scale factor (spatial volume) consistent with (Eucl.) de Sitter space
² quantum fluctuations of the scale factor are well described by the minisuperspace action 

² CDT can provide independent tests of the asymptotic safety conjecture in a setting
not dependent on FRG truncations

² One can make contact with FRG approach to QG by defining RG flow in CDT and 
searching for the IR and  UV fixed points 

² The results for the UV continuum limit seem promising but not conclusive
² Open problems and questions:

² the (potential) UV limit of CDT is obtained at the 1st order phase transition (non-standard)
² this is possible because we observe finite-size scaling and thus the correl. length 𝜉 ∝ 𝑁&
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² this is actually a new (generic ?) feature of quantum gravity, where one can define 
correlations between fluctuating space-time points separated by a geodesic distance 
(not as in ordinary lattice QFTs, where space-time is fixed)
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Thank You !


