Jakub Gizbert-Studnicki

in collaboration with J. Ambjørn, A. Görlich and D. Németh

Causal Dynamical Triangulations From the infrared to the ultraviolet

5th EPS Conference on Gravitation Prague, 9th December 2024

Is lattice quantum gravity asymptotically safe? Making contact between causal dynamical triangulations and the functional renormalization group. Phys. Rev. D 110, 126006 [arXiv:2408.07808]

> IR and UV limits of CDT and their relations to FRG [arXiv:2411.02330]

Challenges of Quantum Gravity (QG)

- As early as in 1916 Einstein* pointed out that "quantum theory would have to modify not only Maxwellian electrodynamics, but also the new theory of gravitation"
- After more than 100 years a complete, consistent quantum theory of gravity is still missing
- ♦ We have a number of interesting but incomplete research programs
 - \diamond string theory
 - $\diamond~$ loop quantum gravity
 - \diamond group field theory
 - $\diamond\,$ causal set theory
 - \diamond noncommutative geometry_ _

asymptotic safety (functional RG flow)

Jattice QFT approaches (CDT, quantum Regge_colc., ...)

A. Einstein triangulation by J. Bryan

* Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688

Challenges of Quantum Gravity (QG)

- ♦ Lack of experimental guidance
- ♦ Conceptual issues: QFT based on Einstein's GR is perturbatively non-renormalizable in D > 2 dim.*
- ♦ But it can be renormalizable in a non-perturbative regime: asymptotic safety conjecture S. Weinberg, 1980
 - renormalization group flow can lead to a non-Gaussian UV fixed point where QG becomes scale invariant (UV complete)
- Lattice formulation would allow to study a unitary, non-perturbative, background-independent and diffeomorphism-invariant quantum gravity
 - \diamond to encode geometry we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classical gravity (IR limit)

Challenges of Quantum Gravity (QG)

- \diamond Lack of experimental guidance
- Conceptual issues: QFT based on Einstein's GR is \diamond perturbatively non-renormalizable in D > 2 dim.*
- \diamond But it can be renormalizable in a non-perturbative regime: asymptotic safety conjecture S. Weinberg, 1980
 - \diamond renormalization group flow can lead to a non-Gaussian UV fixed point where QG becomes scale *invariant (UV complete)*
- \diamond Lattice formulation would allow to study a unitary, non-perturbative, background-independent and diffeomorphism-invariant quantum gravity
 - \diamond to encode geometry we need a dynamical lattice (DT)
 - ♦ UV fixed point should be associated with a 2nd order phase transition
 - \diamond one should be able to reproduce semi-classical gravity (IR limit)

A Mathematical Structure is important: CDT₂D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
 A Mathematical Structure is important: CDT₂D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
 A Mathematical Structure is important: CDT₂D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
 A Mathematical Structure is important: CDT₂D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
 A Mathematical Structure is important: CDT₂D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
 A Mathematical Structure is important: CDT₂D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
 A Mathematical Structure is important.

(J. Amjørn, J. Jurkiewicz, R. Loll) -2-*Renormalizable extensions have problems with unitarity

- 3D: J. Ambjorn, J. Jurkiewicz, R. Loll, Phys.Rev.Lett. 85 (2000) 924
- 4D: J. Ambjorn, J. Jurkiewicz, R. Loll, Nucl. Phys. B610 (2001) 347

Outline

- \diamond Causal Dynamical Triangulations
- \diamond Phase structure
- \diamond Semi-classical phase
- \diamond Functional Renormalization Group
- \diamond RG flow on the lattice (ϕ^4 example)
- \diamond RG flow in CDT
- \diamond Conclusions

- CDT approach to QG is via a lattice QFT, using the path integral (PI) quantization
- \diamond One has to give a precise meaing to:
 - what class of geometries g should be included in the PI
 - \diamond what (classical) action s_{grav} should be used
 - which symmetries (GR diffeomorhisms ?) should be preserved and how to do that
 - \diamond how to compute the PI in practice
 - $\diamond~$ (how to include matter fields)

 $Z_{QG} = \int_{g \in \frac{Lor(M)}{Diff(M)}} D[g] \exp(i S_{\text{grav}}[g])$ (Lorenzian) geometries

- CDT approach to QG is via a lattice QFT, using the path integral (PI) quantization
- ♦ CDT (quantum) geometries:
 - In classical GR one deals with smooth (pseudo-)Riemannian manifolds
 - But in the PI one should also include non-triangulations smooth continuous (Lorenz.) geometries
 - Causality: globally hypebolic spacetimes which can be foliated into spacial slices of equal cosmological proper time
 - ♦ We fix the topology of the manifold (in here we will use the topology: S³xS¹)
 ♦ Geometrics in the second seco
 - ♦ Geometries in the PI are approximated by piecewise linear simplicial manifolds (triangulations) built from two kinds of identical (internally flat) 4-simplices with fixed edge lengths (l_s)
 - ♦ As in ordinary lattice QFT: lattice spacing (l_s) plays a role of the UV cutoff l_s^{-1} which should be removed in the continuum limit ($l_s \rightarrow 0, N_4 \rightarrow \infty$)
 -5-

 $Z_{QG} = \int_{g \in \frac{Lor(M)}{Diff(M)}} D[g] \exp(i S_{\text{grav}}[g])$ $g \in \frac{Lor(M)}{Diff(M)} \longleftarrow \text{(Lorenzian) geometries}$ $Z_{CDT}^{(L)} = \sum_{T} \frac{1}{C_T} \exp(i S_R[T])$ $\underset{\text{causal}}{\longleftarrow} \# \text{ symmetries of T}$ $\underset{\text{angulations}}{\overset{(4,1)}{\longrightarrow}}$

-6-

- CDT approach to QG is via a lattice QFT, using the path integral (PI) quantization
- ♦ CDT action & diffeom. symmetry:
 - ♦ We use the Einstein-Hilbert action
 - For a piesewise linear simplicial manifold (triangulation) it takes the form of the Regge action Nuovo Cim. A19 (1961) 558
 - Curvature is defined by deficit angles around D-2 dim. "hinges" (triangles in 4D)
 - Regge's formulation uses only geometric invariants (geodesic edge lengths and deficit angles) making it coordiante free and therefore manifestly diffeomorphism invariant
 - In CDT one has only two types of bulding blocks with fixed edge lenghts thus the Regge action becomes very simple

 $Z_{QG} =$ $D[g] \exp(i S_{\text{grav}}[g])$ $g \in \frac{Lor(M)}{Diff(M)}$ (Lorenzian) geometries $Z_{CDT}^{(L)} =$ $\frac{1}{C_T} \exp(i S_R[T])$ # symmetries of T triangulations $\overline{-\det g}(R-2\Lambda)$ S_{grav} # {4,1} 4-simpl. # 4-simplices # vertices $S_R = +k_0 N_0 + K_4 N_4 +$ α $(l_t^2 = -\alpha l_s^2)$ 1/G

- CDT approach to QG is via a lattice QFT, using the path integral (PI) quantization
- ♦ CDT computations:
 - In order to investigate the 4D PI one has to use Monte Carlo (MC) simulations
 - MC requires Euclidean formulation (Wick's rotation)
 - Due to the imposed time foliation each CDT Lorentzian geometry can be Wick-rotated to an Euclidean geom.
 - ↔ A the level of the Regge action Wick's rotation is achieved by an analytical continuation (α → −α): general form of the action S_R is the same in (L) and (E)
 - ♦ MC algorithm performs a Markov chain Z^(E)_{CDT} in the space of triangulations by local moves* wchich change the geometry (in 4 dim CDT: 4 moves & 4 anti-moves) * Example of a ("flip") move in 2 dim. DT:

 $Z_{QG} =$ $D[g] \exp(i S_{\text{grav}}[g])$ $g \in \frac{Lor(M)}{Diff(M)}$ (Lorenzian) geometries $Z_{CDT}^{(L)} = \sum_{T} \frac{1}{C_T} \exp(i S_R[T])$ causal _____ # symmetries of T triangulations $d^4x\sqrt{-\det g}\left(R-2\Lambda\right)$ $S_{\text{grav}} = \frac{16\pi G}{16\pi G}$ # {4,1} 4-simpl. # 4-simplices **# vertices** $S_R = +k_0 N_0 + K_4 N_4 + K_4 + K$ 1/GΛ $\sum \frac{1}{C_T} \exp(-S_R[T])$ $Z_{CDT}^{(E)} =$

♦ Phase structure:

- ♦ We perform MC simulations with fixed N₄ The cosmological constant K₄ is tuned to
 N₄ and we effectively have two coupling constants: k₀ and Δ
- Four phases (A, B, C_{dS}, C_b) of different generic geometries were discovered
- ♦ The observable: physical 3-volume of spatial layers: $V_3(t_i) \propto N_3(i) \cdot l_s^3$
- The difference between phases C_{dS} and
 C_b is captured by effective dimensions
- One observes 1st order (blue lines) and
 2nd order (red lines) phase transitions

♦ Phase structure:

- We perform MC simulations with fixed N₄.
 The cosmological constant K₄ is tuned to
 N₄ and we effectively have two coupling constants: k₀ and Δ
- ♦ Four phases (A, B, C_{dS}, C_b) of different generic geometries were discovered
- ♦ The observable: physical 3-volume of spatial layers: $V_3(t_i) \propto N_3(i) \cdot l_s^3$
- \diamond The difference between phases C_{ds} and C_b is captured by effective dimensions
- ♦ One observes 1st order (blue lines) and 2nd order (red lines) phase transitions
 lattice spacing in spatial directions

of tetrahedra at lattice time *i*

lattice time

physical proper time $t_i = i \cdot l_t$,

lattice spacing in time direction

♦ Phase structure:

- We perform MC simulations with fixed N₄.
 The cosmological constant K₄ is tuned to
 N₄ and we effectively have two coupling constants: k₀ and Δ
- ♦ Four phases (A, B, C_{dS}, C_b) of different generic geometries were discovered
- ♦ The observable: physical 3-volume of spatial layers: $V_3(t_i) \propto N_3(i) \cdot l_s^3$
- The difference between phases C_{dS} and
 C_b is captured by effective dimensions
- One observes 1st order (blue lines) and
 2nd order (red lines) phase transitions

♦ Phase structure:

- We perform MC simulations with fixed N₄.
 The cosmological constant K₄ is tuned to
 N₄ and we effectively have two coupling constants: k₀ and Δ
- ♦ Four phases (A, B, C_{dS}, C_b) of different generic geometries were discovered
- ♦ The observable: physical 3-volume of spatial layers: $V_3(t_i) \propto N_3(i) \cdot l_s^3$
- The difference between phases C_{ds} and
 C_b is captured by effective dimensions
- One observes 1st order (blue lines) and 2nd order (red lines) phase transitions

Semi-classical phase

Semi-classical phase

- Phase C_{dS} (de Sitter phase) has good semiclassical properties !
- Effective dimensions consistent with d = 4
- \Leftrightarrow Dynamicaly emerging background geom. \Rightarrow ⟨N₃(i)⟩ profile of elongated ($\tilde{\omega} \neq \omega_0$) 4-sphere

 - \diamond local (average) curvature* consistent with S⁴
 - $\diamond~\sim$ homogenous and isotropic** on large scales
- \diamond Minisuperspace behaviour of the scale factor
 - ♦ From quantum fluctuations of $N_3(i)$ one can recover the effective action of the scale factor
 - The effective action is consistent with the MS action (spatial homogeneity and isotropy)

 \diamond This was "derived" from first principles !

N. Klitgaard, R. Loll, EPJ C 80 (2020) 990

Semi-classical phase

- Phase C_{ds} (de Sitter phase) has good semiclassical properties !
- ♦ Effective dimensions consistent with d = 4
- \diamond Dynamicaly emerging background geom.
 - $\langle N_3(i) \rangle$ profile of elongated ($\widetilde{\omega} \neq \omega_0$) 4-sphere
 - ♦ renormalizing $l_t \rightarrow l_t = l_s \left(\frac{\omega_0}{\tilde{\omega}}\right)^{4/3}$ one obtains symmetric S⁴, i.e., classicaly: (Euclidean) de Sitter universe (max. sym. space with Λ>0)
 ♦ local (average) curvature* consistent with S⁴
 - ♦ ~homogenous and isotropic** on large scales

♦ Minisuperspace behaviour of the scale factor

- ♦ From quantum fluctuations of $N_3(i)$ one can recover the effective action of the scale factor
- The effective action is consistent with the MS action (spatial homogeneity and isotropy)
- This was "derived" from first principles !

* Def. by Quantum Ricci Curvature: N. Klitgaard, R. Loll, PRD 97 (2018) 046008 ** Homogeneity measures in CDT: R. Loll, A. Silva, PRD 107 (2023) 086013

Semi-classical phase

-9-

- Phase C_{dS} (de Sitter phase) has good semiclassical properties !
- ♦ Effective dimensions consistent with d = 4
- ♦ Dynamicaly emerging background geom.
 - $\langle N_3(i) \rangle$ profile of elongated ($\widetilde{\omega} \neq \omega_0$) 4-sphere
 - ♦ renormalizing $l_t \rightarrow l_t = l_s \left(\frac{\omega_0}{\tilde{\omega}}\right)^{4/3}$ one obtains symmetric S⁴, i.e., classicaly: (Euclidean) de Sitter universe (max. sym. space with Λ>0)
 - $\diamond\,$ local (average) curvature* consistent with S⁴
 - $\diamond~$ ~homogenous and isotropic** on large scales
- Minisuperspace behaviour of the scale factor
 - ♦ From quantum fluctuations of $N_3(i)$ one can recover the effective action of the scale factor
 - ♦ The effective action is consistent with the MS $_{24\pi G}^{(24\pi G)} = \left(\frac{\tilde{\omega}}{\omega_0}\right)^{4/3} \tilde{\Gamma} l_s^2$

♦ This was "derived" from first principles !

- As CDT the FRG is also based on non-petrurbative
 QFT framework to quantize gravity
 - ♦ Consider a (potenitally ∞ dim.) space of all effective actions* of QG (or in practice their truncations)
 - Alternatively one has a space of scale-dependent dimensionless couplings related to operators appering in the effective actions
 - \diamond Solve RG flow equations (based on β-functions) of the couplings with the cutoff scale k
 - ↔ Find RG trajectories linking IR (k → 0) and UV (k → ∞) fixed points (β = 0) of the RG flow
- ♦ Asymptotic Safety conjecture (S. Weinberg)
 - Scale invariance of the UVFP imposes strong constraints on most operators (couplings)
 - On RG flow trajectories leading from IR to UV fixed points there is only a finite numer of relevant operators (finite dim. subspace of relevant couplings)
 - Even though the values of the couplings in the UV limit are not small one one can get a predictive theory of QG at all scales (nonperturbative renormalizability)
 - ♦ There is growing evidence from FRG in favour of AS

 $\beta(g)$

♦ Making contact between FRG and CDT: $S_k = \chi \frac{1}{16\pi G_k} \int d^4x \sqrt{\det g} (R - 2\Lambda_k) + gauge + ghost$

- In CDT one measures the (minisuperspace) Einstein-Hilbert effective action
- ♦ Therefore in FRG we take the simplest Einstein-Hilbert truncation of the (Euclidean) effective actions with two scale-dependent couplings: G_k , Λ_k
- An extremum of the E-H effective action is a de Sitter universe (the four-sphere S⁴) with a 4-volume given by the cosmological constant V₄ ∝ Λ_k^{-2}
- ♦ As in CDT we measure only a behaviour of the scale factor a(t) (or the 3-volume $V_3(t)$) we will also consider only minisuperspace fluctuations
- ↔ The (relative) fluctuations are goverened by a dimensionless effective coupling $g_{ef}^2 ∝ G_k Λ_k$
- \diamond In FRG one has both the IR and the UV fixed points
 - ♦ In the IR $(k \to 0)$: $G_k \Lambda_k \to 0$ as $G_k \to G_0 \approx G_N$, $\Lambda_k \to 0$ so one recovers semiclassical universe with $V_4 \to \infty$

$$\Rightarrow \text{ In the UV } (k \to \infty): G_k \Lambda_k \to g^* \lambda^* \sim 1 \text{ as} \\ G_k \to g^* k^{-2} \to 0, \Lambda_k \to \lambda^* k^2 \to \infty \text{ so } V_4 \to 0$$

-11-

- ♦ Making contact between FRG and CDT: $S_k = \frac{1}{16\pi G_k} \int d^4x \sqrt{\det g} (R 2\Lambda_k) + gauge + ghost$
 - In CDT one measures the (minisuperspace) Einstein-Hilbert effective action
 - ♦ Therefore in FRG we take the simplest Einstein-Hilbert truncation of the (Euclidean) effective actions with two scale-dependent couplings: G_k , Λ_k
 - ♦ An extremum of the E-H effective action is a de Sitter universe (the four-sphere S⁴) with a 4-volume given by the cosmological constant V₄ ∝ Λ_k^{-2}
 - ♦ As in CDT we measure only a behaviour of the scale factor a(t) (or the 3-volume $V_3(t)$) we will also consider only minisuperspace fluctuations
 - ♦ The (relative) fluctuations are goverened by a dimensionless effective coupling $g_{ef}^2 \propto G_k \Lambda_k$

 \diamond In FRG one has both the IR and the UV fixed points

- ♦ In the IR $(k \to 0)$: $G_k \Lambda_k \to 0$ as $G_k \to G_0 \approx G_N$, $\Lambda_k \to 0$ so one recovers semiclassical universe with $V_4 \to \infty$
- $\begin{array}{l} \Leftrightarrow \text{ In the UV } (k \to \infty) : G_k \Lambda_k \to g^* \lambda^* \sim 1 \text{ as} \\ G_k \to g^* k^{-2} \to 0, \Lambda_k \to \lambda^* k^2 \to \infty \text{ so } V_4 \to 0 \end{array}$

-11-

- ♦ Making contact between FRG and CDT: $S_k = \chi \frac{1}{16\pi G_k} \int d^4x \sqrt{\det g} (R 2\Lambda_k) + gauge + ghost$
 - In CDT one measures the (minisuperspace) Einstein-Hilbert effective action
 - ♦ Therefore in FRG we take the simplest Einstein-Hilbert truncation of the (Euclidean) effective actions with two scale-dependent couplings: G_k , Λ_k
 - An extremum of the E-H effective action is a de Sitter universe (the four-sphere S⁴) with a 4-volume given by the cosmological constant V₄ ∝ Λ_k^{-2}
 - ♦ As in CDT we measure only a behaviour of the scale factor a(t) (or the 3-volume $V_3(t)$) we will also consider only minisuperspace fluctuations
 - ♦ The (relative) fluctuations are goverened by a dimensionless effective coupling $g_{ef}^2 \propto G_k \Lambda_k$
- \diamond In FRG one has both the IR and the UV fixed points
 - ♦ In the IR $(k \to 0)$: $G_k \Lambda_k \to 0$ as $G_k \to G_0 \approx G_N$, $\Lambda_k \to 0$ so one recovers semiclassical universe with $V_4 \to \infty$
 - $\begin{array}{l} \diamondsuit \text{ In the UV } (k \to \infty) : G_k \Lambda_k \to g^* \lambda^* \sim 1 \text{ as} \\ G_k \to g^* k^{-2} \to 0, \Lambda_k \to \lambda^* k^2 \to \infty \text{ so } V_4 \to 0 \end{array}$

RG flow on the lattice (ϕ^4 *example)*

RG flow on the lattice (ϕ^4 *example)*

$\diamond~$ 4D ϕ^4 (lattice) QFT example*

- ↔ 2 dimensionless bare couplings: m₀, κ₀
- ↔ for each choice of m_0 , κ_0 one can compute the renormalized m_R , κ_R and the correl. length ξ
- \Rightarrow physical correl. length $\xi_{ph} = m_R^{-1} = \xi l_s$
- ♦ one can find RG flow where κ_R , $m_R = const$.
- ↔ there is a phase transition (where ξ → ∞ so following the RG flow trajectory $l_s → 0$)

♦ The UV limit

- ↔ we approach the phase transition (ξ → ∞) keeping the renormalized coupling κ_R fixed
- \Rightarrow in order to do that we have to tune the bare coupling κ_0

 \diamond The IR limit

- ↔ we approach the phase transition (ξ → ∞) keeping the bare coupling κ_0 fixed
- ↔ we cross the $κ_R = const$ RG trajectories in the direction of $κ_R → κ_R^{ir}$

*Unfortunately there is no UV fixed point in ϕ^4 -12-

$$L = (\partial_{\mu}\phi)^{2} + m_{o}\phi^{2} + \kappa_{0}\phi^{4}$$
$$\kappa_{R} \propto \Gamma_{4}(p_{i} = 0; m_{0}, \kappa_{0})$$

RG flow on the lattice (ϕ^4 *example)*

$\diamond~$ 4D ϕ^4 (lattice) QFT example*

- ↔ 2 dimensionless bare couplings: m₀, κ₀
- ↔ for each choice of m_0 , κ_0 one can compute the renormalized m_R , κ_R and the correl. length ξ
- \Rightarrow physical correl. length $\xi_{ph} = m_R^{-1} = \xi l_s$
- ♦ one can find RG flow where κ_R , $m_R = const$.
- ↔ there is a phase transition (where ξ → ∞ so following the RG flow trajectory $l_s → 0$)

♦ The UV limit

- ↔ we approach the phase transition (ξ → ∞) keeping the renormalized coupling κ_R fixed
- \Rightarrow in order to do that we have to tune the bare coupling κ_0

♦ The IR limit

- ↔ we approach the phase transition (ξ → ∞) keeping the bare coupling κ_0 fixed
- ↔ we cross the $κ_R = const RG$ trajectories in the direction of $κ_R → κ_R^{ir}$

*Unfortunately there is no UV fixed point in ϕ^4 -12-

$$L = (\partial_{\mu}\phi)^{2} + m_{o}\phi^{2} + \kappa_{0}\phi^{4}$$
$$\kappa_{R} \propto \Gamma_{4}(p_{i} = 0; m_{0}, \kappa_{0})$$

♦ 4D CDT (lattice) QFT

- ♦ 3 dimensionless bare couplings: K_4 , k_0 , Δ
- ♦ The bare cosmol. const. K_4 is related to lattice volume $N_4 : K_4 \to K_4^{crit}(k_0, \Delta)$ when $N_4 \to ∞$
- ↔ One can argue that inside phase C_{dS} the correl. length: $ξ ∝ N_4^{1/4}$
- ♦ We assume that the CDT MS effective action is consistent with the E-H truncation in FRG
- This implies relations between the effective couplings
- ♦ The UV limit
 - ↔ we will approach the $K_4^*(k_0, \Delta)$ critical surface (ξ → ∞) tuning the bare couplings k₀, Δ such that the effective coupling GΛ stays fixed
 - $\diamond~$ we associate it with the UV limit of FRG
- \diamond The IR limit
 - ↔ we will approach the $K_4^*(k_0, \Delta)$ critical surface (ξ → ∞) keeping the bare couplings k_0 , Δ fixed
 - \diamond we associate it with the IR limit of FRG₋₁₃-

♦ 4D CDT (lattice) QFT

- ♦ 3 dimensionless bare couplings: K_4 , k_0 , Δ
- ♦ The bare cosmol. const. K_4 is related to lattice volume $N_4 : K_4 \to K_4^{crit}(k_0, \Delta)$ when $N_4 \to ∞$
- ↔ One can argue that inside phase C_{dS} the correl. length: $ξ ∝ N_4^{1/4}$
- ♦ We assume that the CDT MS effective action is consistent with the E-H truncation in FRG
- This implies relations between the effective couplings
- ♦ The UV limit
 - ↔ we will approach the $K_4^*(k_0, \Delta)$ critical surface (ξ → ∞) tuning the bare couplings k₀, Δ such that the effective coupling GΛ stays fixed
 - $\diamond~$ we associate it with the UV limit of FRG
- \diamond The IR limit
 - ↔ we will approach the $K_4^*(k_0, \Delta)$ critical surface (ξ → ∞) keeping the bare couplings k_0 , Δ fixed
 - \diamond we associate it with the IR limit of FRG₋₁₃-

n is the geodesic distance between the two points in the case of DT

$$G_2(n) \propto \exp\left[-\frac{n}{c \langle N_4 \rangle^{1/d_H}}\right], \qquad n \gg \langle N_4 \rangle^{1/d_H}$$
 ξ

♦ 4D CDT (lattice) QFT

- ♦ 3 dimensionless bare couplings: K_4 , k_0 , Δ
- ♦ The bare cosmol. const. K_4 is related to lattice volume $N_4 : K_4 \to K_4^{crit}(k_0, \Delta)$ when $N_4 \to ∞$
- ↔ One can argue that inside phase C_{dS} the correl. length: $ξ ∝ N_4^{1/4}$
- We assume that the CDT MS effective action is consistent with the E-H truncation in FRG
- This implies relations between the effective couplings
- \diamond The UV limit
 - ↔ we will approach the $K_4^*(k_0, \Delta)$ critical surface (ξ → ∞) tuning the bare couplings k_0 , Δ such that the effective coupling GΛ stays fixed
 - $\diamond~$ we associate it with the UV limit of FRG
- \diamond The IR limit
 - ↔ we will approach the $K_4^*(k_0, \Delta)$ critical surface (ξ → ∞) keeping the bare couplings k_0 , Δ fixed
 - \diamond we associate it with the IR limit of FRG₋₁₃-

\Rightarrow 4D CDT (lattice) QFT

- \diamond 3 dimensionless bare couplings: K_4 , k_0 , Δ
- \diamond The bare cosmol. const. K_4 is related to lattice volume $N_4: K_4 \to K_4^{crit}(k_0, \Delta)$ when $N_4 \to \infty$
- \diamond One can argue that inside phase C_{dS} the correl. length: $\xi \propto N_{A}^{1/4}$
- \diamond We assume that the CDT MS effective action is consistent with the E-H truncation in FRG
- \diamond This implies relations between the effective couplings $k \to \infty: \ G_k \Lambda_k \to g^* \lambda^*$ $G_k \to g^* k^{-2}, \ \Lambda_k \to \lambda^* k^2$

\diamond The UV limit

- \Leftrightarrow we will approach the $K_4^{crtt}(k_0, \Delta)$ critical surface $(\xi \to \infty)$ tuning the bare couplings k_0 , Δ such that the effective coupling $G\Lambda$ stays fixed
- ♦ we associate it with the UV limit of FRG. $k \to 0$: $G_k \Lambda_k \to 0$
- \diamond The IR limit
 - $G_k \to G_0 \approx \tilde{G}_N, \tilde{\Lambda}_k \to 0$ \Leftrightarrow we will approach the $K_4^{cru}(k_0, \Delta)$ critical surface $(\xi \to \infty)$ keeping the bare couplings k_0 , Δ fixed
 - \diamond we associate it with the IR limit of FRG_13_

$\diamond~$ The IR limit

- $↔ we approach the K_4^{crit}(k_0, \Delta)$ critical surface (ξ → ∞, i.e. $N_4 → \infty$) keeping the bare couplings k₀, Δ fixed
- ↔ for fixed k₀, Δ we have $\tilde{\Gamma}$, $\tilde{\omega} = const. > 0$
- ♦ from FRG for $k \to 0$: $G_k \to G_0 \approx G_N = \ell_{Pl}^2$
- ♦ therefore in CDT lattice spacing remains constant : $l_s \sim \ell_{Pl}$
- ↔ this is consistent with FRG as for $k \to 0$: $Λ_k \to 0$ so $V_4 \propto Λ_k^{-2} \to ∞$
- ♦ CDT (relative) fluctuations vanish and one reproduces (semi) classical spacetime
- ♦ this is also consistent with FRG where $\frac{G_k \Lambda_k \rightarrow 0}{G_k \Lambda_k \rightarrow 0}$

$$\langle N_3(i) \rangle = N_4^{3/4} \frac{3}{4\widetilde{\omega}} \cos^3\left(\frac{i}{\widetilde{\omega}N_4^{1/4}}\right)$$
$$\langle |\delta N_3(i)| \rangle = \tilde{\Gamma}^{1/2} N_4^{1/2} \ F\left(\frac{i}{\widetilde{\omega}N_4^{1/4}}\right)$$

$$\frac{\langle |\delta V_3(t_i)|\rangle}{\langle V_3(t_i)\rangle} = \frac{\langle |\delta N_3(i)|\rangle}{\langle N_3(i)\rangle} \propto \frac{\sqrt{\tilde{\Gamma}\widetilde{\omega}^2}}{N_4^{1/4}} \to 0$$

$$4\pi G = \left(\tilde{\omega}\right)^{4/3} \tilde{\Gamma} I^2$$

-14-

-15-

- ♦ we approach the K₄^{crit}(k₀, Δ) critical surface (ξ → ∞, i.e. N₄ → ∞) tuning the bare couplings k₀, Δ such that the effective G_kΛ_k = g^{*}λ^{*} = const
- ♦ from FRG: $G_k \rightarrow g^* k^{-2} \rightarrow 0$
- ♦ therefore in CDT : $l_s \sim k^{-1} \rightarrow 0$
- ♦ (relative) fluctuations stay constant
- ♦ This requires finding RG flow trajectories $\binom{k_0(N_4), \Delta(N_4)}{parametrized by N_4}$
- ♦ It is only possible by approaching the $C_{dS} A \text{ phase transition line}$
 - $\diamond \,$ we fix Δ ($\Delta=0$)* and change only k_0
 - $\label{eq:star} \diamond \ \ \text{one can compute critical exponent:} \ \ \gamma/4\nu_{uv}$ related to scaling of $\widetilde{\Gamma}\ \widetilde{\omega}^2$ at the transition
 - $\Rightarrow \gamma/4\nu_{uv} = 0.54 \pm 0.04 \ge 1/2$ so it may be possible to approach the UV limit

- ♦ we approach the K^{*}₄(k₀, Δ) critical surface (ξ → ∞, i.e. N₄ → ∞) tuning the bare couplings k₀, Δ such that the effective G_kΛ_k = g^{*}λ^{*} = const
- ♦ from FRG: $G_k \rightarrow g^* k^{-2} \rightarrow 0$
- ♦ therefore in CDT : $l_s \sim k^{-1} \rightarrow 0$
- $\diamond~$ (relative) fluctuations stay constant
- ♦ This requires finding RG flow trajectories $\binom{k_0(N_4), \Delta(N_4)}{parametrized by N_4}$
- ♦ It is only possible by approaching the $C_{dS} A \text{ phase transition line}$
 - $\diamond~$ we fix Δ ($\Delta=0$) and change only k_0
 - $\label{eq:star} \diamond \ \ \text{one can compute critical exponent:} \ \ \gamma/4\nu_{uv}$ related to scaling of $\widetilde{\Gamma}\ \widetilde{\omega}^2$ at the transition
 - $\Rightarrow \gamma/4\nu_{uv} = 0.54 \pm 0.04 \ge 1/2$ so it may be possible to approach the UV limit

- ♦ we approach the K^{*}₄(k₀, Δ) critical surface (ξ → ∞, i.e. N₄ → ∞) tuning the bare couplings k₀, Δ such that the effective G_kΛ_k = g^{*}λ^{*} = const
- ♦ from FRG: $G_k \rightarrow g^* k^{-2} \rightarrow 0$
- ♦ therefore in CDT : $l_s \sim k^{-1} \rightarrow 0$
- $\diamond~$ (relative) fluctuations stay constant
- ♦ This requires finding RG flow trajectories $\binom{k_0(N_4), \Delta(N_4)}{parametrized by N_4}$
- ♦ It is only possible by approaching the $C_{dS} A \text{ phase transition line}$
 - \Leftrightarrow we fix Δ ($\Delta = 0$) and change only k_0
 - $\label{eq:star} \diamond \ \ \text{one can compute critical exponent:} \ \ \gamma/4\nu_{uv}$ related to scaling of $\widetilde{\Gamma}\ \widetilde{\omega}^2$ at the transition
 - $\Rightarrow \gamma/4\nu_{uv} = 0.54 \pm 0.04 \ge 1/2$ so it may be possible to approach the UV limit

RG flow in CDT $k_0^{uv}(N_4) = k_0^{uv} - \frac{c}{N_0^{1/4v_{uv}}}$

-15-

- \Leftrightarrow we approach the $K_4^*(k_0, \Delta)$ critical surface $(\xi \to \infty, \text{ i.e. } N_4 \to \infty)$ tuning the bare couplings k_{α} , Δ such that the effective $G_k \Lambda_k = g^* \lambda^* = const$
- ♦ from FRG: $G_k \rightarrow g^* k^{-2} \rightarrow 0$
- ♦ therefore in CDT : $l_s \sim k^{-1} \rightarrow 0$
- ♦ (relative) fluctuations stay constant
- ♦ This requires finding RG flow trajectories $(k_0(N_4), \Delta(N_4))$ parametrized by N_4
- \diamond It is only possible by approaching the $C_{dS} - A$ phase transition line
 - \Leftrightarrow we fix Δ ($\Delta = 0$) and change only k_0
 - \diamond one can compute critical exponent: $\gamma/4\nu_{uv}$ related to scaling of $\tilde{\Gamma} \tilde{\omega}^2$ at the transition
 - $\forall \gamma / 4 \nu_{\mu\nu} = 0.54 \pm 0.04 \ge 1/2$ so it may be possible to approach the UV limit

RG flow in CDT $k_0^{uv}(N_4) = k_0^{uv} - \frac{c}{N^{1/4v_{uv}}}$

-15-

- \Leftrightarrow we approach the $K_4^*(k_0, \Delta)$ critical surface $(\xi \to \infty, \text{ i.e. } N_4 \to \infty)$ tuning the bare couplings k_0 , Δ such that the effective $G_k \Lambda_k = g^* \lambda^* = const$
- ♦ from FRG: $G_k \rightarrow g^* k^{-2} \rightarrow 0$
- ♦ therefore in CDT : $l_s \sim k^{-1} \rightarrow 0$
- \diamond (relative) fluctuations stay constant
- ♦ This requires finding RG flow trajectories $(k_0(N_4), \Delta(N_4))$ parametrized by N_4
- \diamond It is only possible by approaching the $C_{dS} - A$ phase transition line
 - \Rightarrow we fix Δ ($\Delta = 0$) and change only k_0
 - \diamond one can compute critical exponent: $\gamma/4v_{uv}$ related to scaling of $\tilde{\Gamma} \tilde{\omega}^2$ at the transition
 - $\Rightarrow \gamma/4\nu_{uv} = 0.54 \pm 0.04 \ge 1/2$ so it may be possible to approach the UV limit

Conclusions

- CDT is a lattice QFT and a promising candidate for a UV complete theory of QG formulated in a fully non-perturbative and background independent way
- ♦ One can study dynamically emerging background geometry and quantum fluctuations
- \diamond CDT has a rich phase structure including the semi-classical phase C_{dS}
 - ♦ correct IR limit of the scale factor (spatial volume) consistent with (Eucl.) de Sitter space
 - ♦ quantum fluctuations of the scale factor are well described by the minisuperspace action
- CDT can provide independent tests of the asymptotic safety conjecture in a setting not dependent on FRG truncations
- One can make contact with FRG approach to QG by defining RG flow in CDT and searching for the IR and UV fixed points
- ♦ The results for the UV continuum limit seem promising but not conclusive
- \diamond Open problems and questions:
 - ♦ the (potential) UV limit of CDT is obtained at the 1st order phase transition (non-standard)
 - \Leftrightarrow this is possible because we observe finite-size scaling and thus the correl. length $\xi \propto N_4^{1/4}$
 - this is actually a new (generic ?) feature of quantum gravity, where one can define correlations between fluctuating space-time points separated by a geodesic distance (not as in ordinary lattice QFTs, where space-time is fixed)

Thank You !

