Gravitational Waves, Experiment Lecture 3

Andreas Freise 09.09.2025

Schedule

Lecture 1:

- Introduction to GWs
- History of ground-based GW detection
- Basics of interferometric GW detection

Lecture 2:

- Calculating optical signals in basic interferometers
- Properties of optical cavities

Lecture 3:

- Modern interferometric detectors
- Plans for future detectors
- Einstein Telescope

Hands-on:

- Using the interferometer simulation Finesse
- Properties of optical cavities

Modern interferometric detectors

Two LIGO Instruments

Question:

Why build two large detectors? One even larger would be better value for money?

Two LIGO Instruments

Advanced interferometry

What makes it better?

- GW effect scales with arm length: large detectors
- Optical signal scales with light power: high-power laser, optical cavities
- Laser beam fluctuations make noise: filter cavities

Stop everything from shaking!

https://gwic.ligo.org/3Gsubcomm/documents/GWIC_3G_R_D_Subcommittee_report_July_2019.pdf

What is limiting the detector? Self-noise!

- Each trace is a detector noise projected into the signal channel, i.e. these are noise/signal curves).
- The noises are plotted as **amplitude** spectral densities
- The sum of the the noises is called the detector sensitivity.
- Terrestrial noises provide the socalled **seismic wall**, limiting sensitivity at low frequencies

Quantum uncertainty

LIGO displacement sensitivity:

$$\Delta x \sim \sqrt{S_h(f)L\Delta f}|_{100\text{Hz}} \sim 10^{-19} \,\text{m}$$

de Broglie wavelength of 40kg test mass:

$$\lambda_{\rm d} \sim \sqrt{\hbar/(2\pi \, m \, f)}|_{100{\rm Hz}} \sim 10^{-19} \, {\rm m}$$

Quantisation of optical field:

Field "position": Phase quadrature

Field "momentum": Amplitude quadrature

Satisfying Heisenberg Uncertainty

Ramp up the power

Quantum-noise limit of a Michelson interferometer

(SQL = Standard Quantum Limit)

Increasing the arm length

$$\phi(t) = 2kL\frac{1}{\tau} \int_{t-\tau}^{t} h(t')dt'$$

$$\phi = 2kLh$$

- Sensitivity of Michelson interferometer can be increased by making the arms longer (signal propositional to L)
- Note that longer interferometers have a smaller bandwidth, since GW signal gets 'averaged' over the roundtrip time. The response function is a Sinc-function in the frequency domain, with zeros.
- Ideally few 100 km long (for certain interesting astrophysical sources), but money/terrain limits this to few km.
- Could use a delay line (Herriott cell), but this has practical issues.

Question:

The space detector LISA has millions of km long arms? What about those dips (zeros)?

Optical cavity (Fabry-Perot)

- Resonant optical cavity formed by two highly reflecting mirrors
- Reflection:

$$rac{E_r}{E_0} = -r_1 + rac{t_1^2 r_2 \mathrm{e}^{i\phi}}{1 - r_1 r_2 \mathrm{e}^{i\phi}} \qquad \qquad \phi = 2kL$$

$$\phi = 2kL$$

Resonances spaced by Free-Spectral Range:

$$\delta L_{\mathrm{FSR}} = rac{\lambda}{2} \quad \delta
u_{\mathrm{FSR}} = rac{c}{2L}$$

Finesse:

$$\mathcal{F} = \frac{\delta L_{\rm FWHM}}{\delta L_{\rm FSR}} = \frac{\delta \nu_{\rm FWHM}}{\delta \nu_{\rm FSR}} = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2}$$

Effective number of round-trips:

$$N_{\text{eff}} = \frac{2}{\pi} \mathcal{F}$$

Fabry-Perot Michelson

- Add partially reflecting 'Input Test Masses' at the beginning of the long arms, so that light will 'bounce many times' up and down arm cavities.
- For Virgo: F = 440, L = 3 km, L_{eff} = 840 km!
- Only works when cavity lengths are actively kept on resonance, so comes at cost of complexity

Fabry-Perot Michelson

- Effect on sensitivity of adding a FP to the arms is similar to increasing the arm lengths by a factor N_{eff} , but without the extra zeros in frequency domain
- ullet Cavity behaves like a low-pass filter with $f_{
 m cut-off} = \delta L_{
 m FWHM}/2$
- For Advanced Virgo: f_{cut-off} = 57 Hz

Power recycling

- Michelson is tuned to dark-fringe, light is reflected back to the laser
- Add a 'Power Recycling Mirror', to form another resonant cavity, effectively increasing the laser power in the arms by a factor ~37
- Laser power ~25 W, power in central cavities ~500 W, power in long arm cavities ~100 kW!

Signal recycling

- Passing GW causes 'audio sidebands' around laser frequency. By adding an extra Signal Recycling Mirror, these signal sidebands can be sent back into the interferometer to gain more phase
- Technique already used at LIGO since O1 science run, new for Virgo in O4 run

Signal recycling

Placing a highly-reflective mirror in front of the photo detector makes detector resonant to signal at specific frequency, allows shaping of the quantum-noise limited sensitivity.

Question:

Interferometer is on the 'dark fringe'. How can a mirror in the 'dark' port make the signal stronger?

Seismic isolation: the pendulum

- Mirrors on Earth would vibrate to much, needs seismic isolation
- Suspend them by wires to form a pendulum, you attenuate seismic noise above resonance

A GEO600 Mirror Suspension

Multi-stage pendulum for more isolation

- In reality, a single pendulum is not enough: use multiple stages
- Also need to isolate vertically due to curvature of the earth, vertical to horizontal coupling ~ 1/10000

Virgo: super-attenuator

- Need more than a 10 orders of magnitude attenuation above 10 Hz
- Use combination of active pre-isolation stage (inertial free platform balancing on inverted pendulum, using accelerometers and position sensors) and passive multi-stage pendulums and blade springs
- Mirrors are suspended by 4 glass fibers for thermal noise: need materials with low mechanical losses

Vacuum envelope

- Fluctuations of air-pressure changes optical path length, so GW interferometers are located inside large vacuum tubes
- Virgo interferometer: 7000 m³ vacuum, long tubes have pressure ~10⁻⁹ mBar
- Biggest UHV system in Europe, only LIGO is bigger

Optics

- Main laser: 1064 nm Nd:YAG NPRO, amplified in 2 stages to ~60 Watt
- Main mirrors: 41 kg low absorbing fused silica, polished with RMS < 0.1 nm
- Low loss multi-layer coatings (both optical and mechanical), reflectivity up to 99.996 %
- Beam shape: Gaussian with radius of a few cm, input/output telescopes for matching to laser and photodiodes

Position sensing and control

- Interferometer is only sensitive when all cavities are on resonance / at dark fringe: use real-time system to control many degrees-of-freedom
- Error signals obtained mostly using RF-modulaiton schemes: modulate laser beam with Electro-Optic Modulater, demodulate photodiode/ quadrant signals (similar to lock-in amplifiers)
- Actuate on mirrors using voice-coil actuators
- Similar control loops for angular degrees of freedom

Question:

GWs mimic the motion of the end mirrors. Position-sensing and control should correct for that and remove the GW signal, no?

Technical detector noise

- In practice, the sensitivity is also spoiled by various 'technical noises':
 - coupling to environmental noise: magnetic, acoustic, seismic
 - scattered light: non-linear process!
 - ADC/DAC/electronics noise, ...
- Takes many years of commissioning and 'noise hunting' to mitigate all of these

SR3 At 2016-09-28-04-30-57 UTC

Scattered light

The GW spectrum

The Gravitational Wave Spectrum

- Interesting science over a huge frequency range
- Science of PTA/space/ground is complementary, similar to IR/VIS/UV astronomy
- In 20 years, we might see sources scanning through LISA band into ET band!

The Einstein Telescope

Question:

OK, now it's a triangle? Why not two L-shaped detectors?

The case for future GW observatories

Early star formation, primordial black holes, seeds of supermassive black holes, standard-sirens to measure Hubble constant to ,much easier ages ...

Set the alarms for astronomers

Possible ET site(s)

- There are now three candidate sites in Europe to host ET:
 - The Sardinia site, close to the Sos Enattos mine
 - The Euregio Meuse-Rhine (EMR) site, close to the NL-B-D border
 - Saxony (Germany) near the Polish border

Einstein Telescope design

Parameter	ET-HF	ET-LF
Arm length	1 0 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10-20 K
Mirror material	fused silica	silicon
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1 064 nm	1550 nm
SR-phase (rad)	tuned (0.0)	aetunea (U.6)
SR transmittance	1 0 %	20 %
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	$1\times300\mathrm{m}$	$2\times1.0\mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	TEM_{00}	TEM_{00}
Beam radius	12.0 cm	9 cm
Scatter loss per surface	37 ppm	37 ppm
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1 \text{ Hz}$)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor of a few

Quantum noise and light power

- Quantum fluctuations of light, are one of the main limitations to ET sensitivity
 - In ET-LF, it will limit the sensitivity from 3 Hz onwards;
 - In ET-HF, it will limit from 200 Hz onwards;

Conor Mow-Lowry

New special focus: noise at low frequencies

Arm length 9.23 m

Input mode cleaners

Two Michelson interferometers: Each arm allows operating at a different cryogenic temperature (123K and 18K).

See also: arXiv: 2206.04905v1 10 June 2022

De #ETpathfinder is een baanbrekende faciliteit met blijvende waarde voor de wetenschap. Ik hoop van harte dat we over een aantal jaar de Einstein Telescoop in Zuid-Limburg kunnen gaan bouwen en het bijzondere werk van de ETPathfinder op nog grotere schaal kunnen voortzetten.

4:08 PM · May 24, 2022 · Twitter Web App

Dutch involvement in ground-based GW instrument science

Virgo: large-scale detector in Italy, able to detect GWs, currently taking scientific data, hardware upgrades are being prepared.

ETpathfinder: 10m scale prototype interferometer, a testbed for future GW technologies, currently under construction.

Einstein Telescope: plan for future observatory in Europe, research and technology development, preparation for new large infrastructure.

Summary

- Moder interferometric detectors are still based on the Michelson interferometer.
- The sensitivity is increased by better design and by better technology, reducing limiting self-noise of the detectors.
- We are just a few years after the first breakthrough detection. The next decades will bring beautiful science and exciting technical projects.
- The Netherlands has a leading role in the Einstein Telescope, a unique opportunity for defining the future of an entire scientific field.