

Overview of PTOLEMY Critical Elements

Chris Tully (Princeton University)

I JULY 2025 PTOLEMY INTERNATIONAL WORKSHOP AT DE LINDENBERG NIJMEGEN, THE NETHERLANDS

End-to-End Drift Collimation and Transmission Results

10% Static Transport Achieved!!! Down to 160eV

Average over $\phi = [0, 2\pi], N = 81600$

Hydrogen plasma graphene loading

Total Effective Bandstructure

Fabrication of a Tritiated-Graphene Target/Source Hydrogen and Deuterium loading on graphene at Roma1 and Roma3

atomic H as a tool to '*pinch*' the sp² bonds towards a sp³ configuration while maintaining the planar nature of graphene

sp³ C-H bond

T-chamber in Rome side view:

UKAEA's Active Gas Handling System (tritium for JET, EU Tokamak) for feasibility study & design requirement of a new T loading chamber

Maximizing Target Capacity and Transfer Functions

Transmission Function Setup

- 1mm radius circular area split into 50 rings (5 shown)
- Set pitch (theta) and emission phase angle (phi)
- Blocks of 10 deg pitch (5-15, 15-25, ..., 75-85 deg)
 - Uniform distribution of +/- 5 deg about 10, 20, ..., 80 deg pitches
 - Per pitch block: 8x fixed phi blocks in 45 deg steps (0, 45, ..., 270, 315 deg)
 - 8 pitch blocks x 8 phi blocks = 64 blocks
 - 50 rings = 10,200 particles per block
 - Total N = 652,800 endpoint electrons
- ~3 days per block, running parallel batches on Princeton cluster

PTOLEMY: 2D MATERIAL - GRAPHENE

Other graphene structures also under study

 $\phi \equiv$ "Atomic" work function

PTOLEMY: 2D MATERIAL - GRAPHENE

Other graphene structures also under study 12

 $\phi \equiv$ "Atomic" work function

Graphene-induced spectral deformations

- Discrete spectrum: bound final state ³He⁺ remains bound to the graphene
- Continuous spectrum: ionized final state ³He⁺ is ejected from the graphene
- Three recipes used to compute numerically the modified spectra [Angelo Esposito]:

Leonardo Perna | Gran Sasso Science Institute

4/06/2025

13

PL method: 90% CL exclusion sensitivity

PL method: 3σ CL discovery sensitivi

Theory paper on solid state effects on the electron spectrum Leonardo Berna | Gran Sasso Science Institute & consequent theory systematics on m_v extraction (A. Casale, A. Esposito G. Menichetti, V. Tozzini)

DEMONSTRATOR MAGNET

BEING BUILT AND WILL BE INSTALLED AT THE LNGS KEY ELEMENT TO REALIZE THE PTOLEMY EXPERIMENT

Construction ASG/Suprasys consortium of a SC dipole with special attention to the fringe field

Under construction in Genova \rightarrow Shipment to CERN → LNGS Simulated B-map Low Power MgB₂ Superconducting Conduction-cooled Coils Vacuum System 🗳 < 200 cm

Zero B field saddle point key feature of the field map

HV High precision stability (LNGS)

17

Filter Demo

RF MEASUREMENTS NON-DESTRUCTIVE ELECTRON TAG

RF Readout

Magnitude = -1.697dBm h2:-74.41dBm h3:-79.96dBm h4:-81.85dBm h5:-92.8dBm h6:-92.73dBm h7:-89.67dBm Frequency = 170Mhz

RECENT PROJECT 8 TRITIUM RF MEASUREMENT

RF measurement background levels extremely low.

No events observed above endpoint, Setting upper limit on background rate

< 3×10⁻¹⁰ /eV/s (90% CL)

→ Background Rate
 < I event per eV
 in 100 years!

ACHIEVED!! RF MEASUREMENTS NON-DESTRUCTIVE ELECTRON TAG

RF Antenna Array

MICRO-CALORIMETER

Based on the expertise of the INRiM important results have been achieved on electron measurement with TES. Key elements of the measurements: performing TES and new e-source based on nanostructures

First measurement of electrons at 100 V with resolution of ~1-1.5 eV

Best in the World!

Design Goal (PTOLEMY): Δ*E*_{FWHM} = 0.05 eV @ 10 eV

translates to $\Delta E \propto E^{\alpha}$ ($\alpha \leq 1/3$) $\Delta E_{FWHM} = 0.022 \text{ eV} @ 0.8 \text{ eV}$

Precision energy measurement from Condensed Matter/ARPES Electostatic analyser

~few meV energy resolution

Electron optic basic equation

The Waag for I neutrino mass

MADCAT pitch angle coll

Target capacity

Mass Sensitivity

w/ Graphene

RF antenna arrays ExB slow drift

Electrostatic

spectro.

TES microcal.

CRES meas./readout.3 Filter ator demo

CONCLUSION

- PTOLEMY's goal is to eventually detect the cosmic neutrino background
- The detector prototype will be ready at LNGS by the end of this year
- Prototype baseline option is: T embedded on graphene; New concept EM filter; electron energy resolution measured in several steps (SDD/electrostatic spec/TES). Ultimately operating with sub-eV energy resolution.
- Ultimate goals of the Demonstrator: instrumented mass ~ hundreds of μg, energy resolution 50-100 meV, T storage solution will come from optimization of atomic T support structure. Time scale 5 years.
- ''Intermediate'' physics program of Demonstrator: neutrino mass measurements (or limits) beyond what has been achieved by all previous experiments.
- Submitted letter of intent to European Strategy for Particle Physics 2026 (#28)
- Submitted LOI to INFN CNS-II

The PTOLEMY Collaboration

R. Ammendola¹³, A. Apponi¹⁴, G. Benato^{3,4}, M.G. Betti^{12,12a}, P. Bos^{1,2}, G. Cavoto^{12,12a},
M. Cadeddu⁶, O. Castellano^{14,14a}, E. Celasco^{6,6a}, W. Chung¹⁷, A.G. Cocco³, A.P. Colijn^{1,2},
B.Corcione^{12,12a}, N. D'Ambrosio³, G. De Bellis^{12,12a}, N. de Groot¹⁰, A. Esposito^{12,12a},
M. Farino¹⁷, S. Farinon^{8a} A.D. Ferella^{3,5}, L. Ferro⁶, L. Ficcadenti^{12,12a}, G. Galbato Muscio^{12,12a},
S. Gariazzo^{15,15a}, A. Langella¹⁷, G. Mangano^{9,9a}, L.E. Marcucci^{11,11a}, C. Mariani^{12,12a},
J. Mead^{1,2}, G. Menichetti¹¹, M. Messina³, M. Naafs¹, V. Narcisi^{6,6a}, F. Pandolfi¹², C. Pérez de los Heros¹⁶
O. Pisanti^{9,9a}, F.M. Pofi^{3,4}, A.D. Polosa^{12,12a}, I. Rago¹², N. Rossi³, A. Ruocco^{14,14a},
G. Salina¹³, G. Santucci⁶, G. Sestu^{6,6a}, A. Tan¹⁷, V. Tozzini^{11,11b}, C.G. Tully¹⁷, I. van Rens¹⁰,
F. Virzi^{3,5}, G. Visser¹, M. Viviani^{11a}

