Ongoing Injection Studies of Electrons from E-gun to Permanent Magnet

Presentation for PTOLEMY Collaboration Meeting - Nijmegen, 02 July 2025

Francesca Maria Pofi - GSSI, INFN LNGS

Outline

- Proposes
- Characterization of permanent magnet
- 1st setup: the perfect source for RF calibration
- 2nd setup: how to enter and get out in 1 T field
- E-gun setup state of art
- Prospectives & Next steps

A Compact Powerful Magnet @ LNGS

- Magnet in LNGS:
 - Halbach cylinder permanent magnet
 - 185 mm length, 170 mm external Ø, 50 mm internal Ø
 - 1 T uniform magnetic field in *limited region inside*
 - Only z profile of B module from producers
 - Field lines difficult to simulate (field produced by array of magnets)
- Actual usage: RF detection setup with ^{83m}Kr gas injected directly into trap

E-gun + Magnet: Two Possible Measurements

1st setup: injection of beam electrons in actual RF region setup in LNGS (F. Virzi talk)

- Now: ^{83m}Kr injection → 30.4 keV e⁻ (L line) produced in random point of trap
- With e-gun:
 - ✓ 18.6 keV electrons
 - ✓ More control on electron initial distribution
 - \checkmark More electrons (e-gun current till mA!)
- 2nd setup: passage of electrons trough 1 T magnetic field proof-of-principle
 - Bottle effect breaking demonstration
 - Become familiar with same drift exploited in filter

Exploiting Laplace Equation for Scalar Potential

Aim: know magnetic field behavior **outside** magnet to simulate e⁻ injection

- No sources in region of interest \longrightarrow governing laws:
- Procedure:
 - 1. Solve Laplace equation with **Neumann boundary conditions** = B_{\perp} on infinte plane
 - 2. Derive B from ϕ_m
 - 3. Outcome = magnetic field lines
- \triangleright Only need to measure B₁ on "infinite" plane

Francesca M. Pofi

- Gauss's Law for Magnetism:
- $\nabla \cdot \mathbf{B} = 0$ (No monopoles)
 - Ampère's Law (Static, No Currents):

 $\nabla \times \mathbf{B} = 0$ (Field is curl – free)

- Implications:
 - Existence of a scalar potential:

 $\mathbf{B} = -\nabla \phi_m$

• Laplace's Equation for φ_m :

 $abla^2 \phi_m = 0$

Measurement of Boundary Conditions

Aim:

measure $B_{\!\perp}\,$ on infinite plane outside magnet

plane // to cylinder face, 3 mm from it

Setup:

- Halbach magnet dismounted from RF setup
- Hirst GM08 Gaussmeter
- cap by LNGS Mechanics Workshop with slots for inserting probe 7 mm apart on both diagonals

Francesca M. Pofi

GS SI

Behavior Showing Two Poles

▶ 54 points each diagonal, repeated every 9°

Francesca M. Pofi

S G S

COMSOL Computed Field

- (collab with dr. C.Rizza from UnivAq)

Two examples of arrow plots from field obtained:

Internal Field: Measurements + CERN Maps

- Bx measurement for x,y=0 varying z through Gaussmeter (by Federico)
- Scale of Bx, By for every z according to the measured profile

Francesca M. Pofi

• Bz scaled linearly from the values on face to the Bz=0 point ($\sim 2 \text{ cm far}$) $\rightarrow to be improved!$

Very Steep Bx Profile

A Compact Simple version of Accelerator Filter

Preliminary injection geometry: 5 sets of electrodes (2 bouncing + 1 top + 1 bottom each) to create very compact single channel accelerator filter

Lot of things to take into account

- 1. Limited space in xy
 - Tube for vacuum inside magnet cavity with $\emptyset < 50$ mm
 - For RF: rigid space constraints to match with RF electrodes into trap (15 mm height x 37 mm width)
- 2. **B** field limit
 - Too low $B \rightarrow$ too large Larmor radius; too high $B \rightarrow$ problems with electrons ejection
- 3. Electron energy (**E**_e) limit
 - Too low E \longrightarrow limit in e-gun performances; too high E \longrightarrow too large Larmor radius

Francesca M. Pofi

Quick Drifts Recap during Injection

- ➢ Bx increase in -z direction \rightarrow drift in +y direction
- To compensate it: E in +z direction needed

To let electrons drift along z: E in -y direction needed

Francesca M. Pofi

В

V1

RF Setup: Injection & Slowdown Strategies

Electrodes setup:

- 5 electrodes' sets of 2 cm length + RF ones
- dimensions matching with RF:

> 8.2 mm distance in y,

> 30 mm in x

Voltages applied:

S

• top injection electrodes following a sigmoidal (smoother) profile

grounded injection bottom electrodes

• RF electrodes to minimize z-drift (still to optimize!)

RF Setup: Injection & Slowdown Strategies

Potential map & isolines

- B field Energy compromise: ✓ 600 eV electron \checkmark 6 cm far from magnet (Bx= 38 mT)
- Pitch angle of 50°
- Centered in xy plane

~		
U	-	
_	-	
	_	
7		
/	_	
С.	_	
	-	
_	-	
2	-	
_	_	
	_	
D.		
9		
_	-	
b	-	
	_	
	-	
1	_	
	_	
1		
L		
	-	
_	-	
В	-	
	-	
	_	
5		
2		
	-	
3	_	
	-	
	_	

v		
626	•	
000	_	
000	_	
000	_	
000	_	
148	•	

Minimum Detectable Energy, Still Too Fast

K (eV) Preliminary CST results: 10000 9000 -----✓ 1T region reached 8000 7000 - from 600 eV to ~10 keV 6000 \rightarrow RF power ~0.7 fW \rightarrow in principle 5000 detectable 4000 3000 • 50 ns to reach RF region, 2000 1000 450 ns to travel 5 cm of it Ω

good slowdown, still not enough to be detectable (minimum 30 μ s needed)

- find right RF voltages to keep e- @ same altitude (now too close to top electrode)
- **Deeper result analysis with Lorentz4** (see N.Rossi talk)

From RF to Magnet Crossing Setup

Preliminary electrodes setup:

- Symmetric geometry: > 5 injection electrodes' sets, > "RF electrodes" (reduced in length) > 5 ejection electrodes' sets
- dimensions still matching with RF (not needed!)

Voltages applied:

- Injection as previous setup
- RF voltages matching 5th electrodes' ones
- Ejection with mirrored voltages wrt center $(\nabla B \text{ inversion} \longrightarrow E \text{ in } -z \text{ direction to compensate!})$

From RF to Magnet Crossing Setup

Potential map & isolines

New trajectory simulation framework = Lorentz4

- takes as input CST field maps
- reduced simulation time
- customizable post-processing

0.015 0.0 0.005 0 ' [m] -0.005 -0.01 -0.015 -0.02 0.03 0.02 0.01 x [m]

Francesca M. Pofi

Kinetic into Potential Energy Transformation

-0.15

- Electron coming out from electrode system
- Good trajectory control despite poor segmentation
- ✓ Kinetic energy from 600 eV to ~ 10 keV and viceversa in ~ 30 cm!

Efficiency Strongly Limited by Y-Dimension

₽ 30⊣

25

20 -

10

Lorentz for (small) Montecarlo to simulate a real electron source features (e-gun ones)

- 2 mm diameter spot (pessimistic number)
- 5° angle spread

Result: 6 over 30 potentially detectable

Lot of electrons lost in last electrodes set by hitting top or bottom one

- Still using dimensions matching trap constraints! Not needed for this setup
- Can enlarge a bit x-y dimensions (still $\emptyset < 50$ mm constraint)

Road to Magnet Crossing Setup Optimization

Dimensions changing:

 \checkmark y distance from 8.2 to 15 mm

- x distance from 30 to 35 mm \rightarrow higher y/x \rightarrow less field uniformity \times
- electrode length from 20 to 18 mm

	19000
-	17245
ed:	15491
it antimized for new dimensions	13736
at optimized for new dimensions	11982
art tried for now)	10227
	8473
	6718
	4964
	3209

1455

-300

Promising Preliminary Results

- Particle source: 700 eV e⁻ (better for e-gun!) 6 cm far from magnet, 50° pitch angle
- Just a quick partial trial before coming here

Promising features:

- start
- electron altitude kept farer from electrodes
- smaller Larmor radius/y distance ratio

Our Electron Gun: Features & Critical Points

Features:

- Ta disk = grounded Anode
- HV to accelerate electrons up to -20 kV
- Wehnelt
- Focus system (Einzel lens)
- X/Y deflection plates
- Critical points:
 - Performances guaranteed from 1 to 20 keV
 need to be tested @ 600/700 eV
 - Minimal working distance = 10 cm

 $\rightarrow \mu$ -metal tube till setup starting point ?

How the Full Setup Looks Like: Some Upgrades

FEEDTHROUGH + (INSIDE) Faraday Cup (FC) colloidal graphite &/or phosphorous screen

MICRO CHANNEL PLATE (INSIDE)

RESISTIVE CIRCUIT To connect 8.5 digits multimeter NEW

ANTISTATIC FLOOR

Recap & Next Steps

 \checkmark Toy setup with only 5 injection electrodes sets worked \rightarrow good starting point!

Time to

- Increase segmentation (e.g. 1 cm electrodes) —> more trajectory control
- optimize parameters (almost everything)
- Aims for each setup:
 - RF: acceleration system till 18.6 keV + slowdown till 30 μ s in RF region
 - Magnet Crossing: maximize efficiency + possible detection setup
- To Do:
 - Better measurement of B field inside magnet (eg. Bz profile)
 - E-gun characterization @ 600/700 eV

Francesca M. Pofi

BACKUP SLIDES

Francesca M. Pofi

A Versatile Setup

Faraday cup &/or phosphor screen mounted on a feedthrough

Custom-made, in collaboration with LNGS Mechanics Workshop

Allows shifts on y-axis with sub-mm precision

Allows to completely remove beam monitoring unit from beam path

Francesca M. Pofi

S

Wehnelt as a Beam Intensity Filter

What is?

- Tubular housing for cathode with fixed aperture
- Negative bias --> secondary electric field in cathode proximity
- How can be employed?
 - <u>Mid-range</u> voltage \rightarrow adjust beam divergence & uniformity \rightarrow beam characterization lacksquare(spot size, I-V curve etc.)
 - <u>High</u> voltage —> reduce electron emission from cathode edges till complete beam suppression ullet

-----> Beam Intensity Filter

possible needing for future usage as electron trap calibration source

Francesca M. Pofi

5	
	-

Beam Current Optimized by Wehnelt

Setup:

- Keithley 2450 SourceMeter + double Faraday cup
- Beam electron energy: 1 keV, 5 keV, 10 keV, 18.6 keV
- Source voltage (V_{source}) set to 1.521 V
- Focusing & deflection voltages optimized through Phosphor screen for each energy
- Base pressure: 10-7 mbar

- Similar behaviors, different V_{grid} optimizing beam current
- Better I_{beam}/I_{em} ratio for lower electron energies Francesca M. Pofi

```
GS
SI
```


Up to 10⁻⁴ Reduction Factor

Example Let's define: - "collection" efficiency $\epsilon = I_{beam}/I_{em}$ - reduction factor $r = I_{beam}/I_{em}(V_{grid} = 0V)$

Focusing on run @ 18.6 keV:

- beam current I_{beam} maximized for V_{grid} = 30 kV
- ϵ from 11% to ~100% for V_{grid} > 45 kV
- $r > 10^{-4}$ for $V_{grid} > 57 \text{ kV}$

from 140 µA to 700 pA! not able to read higher reduction for instrumental limit

Preliminary Estimate of Beam Size

Aims:

estimate beam size + find correlation deflection voltage - position shift

Scan of 3 mm Faraday cup hole moving beam with deflection voltages

- I_{em} fixed to 5 uA
- V_y from -240 V to 150 V with 5 V steps

Result = convolution of - gaussian (e-gun spatial current distrib) - <u>step function</u> (FC hole)

l_{beam} (uA) 4.5 3.5 2.5 1.5 0.5 -200 -250

Francesca M. Pofi

S

Sub-mm Spot Size

 \gg From 1st derivative of I_{beam} vs V_y points (computed as $I_{beam}(V_y^i) - I_{beam}(V_y^{i-1}) / V_y^i - V_y^{i-1}$)

- Gaussians reflecting beam spatial distribution with
 - Distance (peak to peak) \simeq 170 V = FC hole diameter = 3 mm \rightarrow 1 V = 0.0176 mm
 - $\sigma = 30 \pm 0.3$ V (fitted from 2nd gaussian) $\rightarrow \sigma = 0.53$ mm

Recap & Next Steps

 Beam Current with reduction factor 10⁻⁴ exploiting Wehnelt grid

1st beam size estimate of ~0.5 mm
 + correlation deflection voltage - position shift

 \checkmark I vs V from 0.1 μA to 180 μA

 \checkmark Setup to measure B_{\perp} on extended plane ready

Francesca M. Pofi

Beam Current with femtoammeter to probe higher reduction

Estimate using manual shift via feedthrough + optimize focusing voltage

Curve down to pA (or fA)

Measurement, COMSOL solution, File Upload, Geometry implementation, Multiparticle Simulation

Helmholtz coils cage

