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Proposes


Characterization of permanent magnet


1st setup: the perfect source for RF calibration 


2nd setup: how to enter and get out in 1 T field


E-gun setup state of art


Prospectives & Next steps
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A Compact Powerful Magnet @ LNGS

Magnet in LNGS: 


• Halbach cylinder permanent magnet 


• 185 mm length, 170 mm external ⌀, 50 mm internal ⌀


• 1 T uniform magnetic field in limited region inside 


• Only z profile of B module from producers


• Field lines difficult to simulate  
(field produced by array of magnets)


Actual usage: RF detection setup with 83mKr gas  
injected directly into trap
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E-gun + Magnet: Two Possible Measurements

1st setup: injection of beam electrons in actual RF region setup in LNGS (F. Virzi talk)


• Now: 83mKr   injection      30.4 keV e- (L line) produced in random point of trap


• With e-gun: 

✓ 18.6 keV electrons 

✓More control on electron initial distribution

✓  More electrons (e-gun current till mA!)


2nd setup: passage of electrons trough 1 T magnetic field proof-of-principle


• Bottle effect breaking demonstration


• Become familiar with same drift exploited in filter 
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Exploiting Laplace Equation for Scalar Potential

Aim: know magnetic field behavior outside magnet to simulate e- injection


No sources in region of interest             governing laws:


Procedure: 


1. Solve Laplace equation with  
  Neumann boundary conditions = B  on infinte plane


2. Derive B from 


3. Outcome = magnetic field lines 


Only need to measure B  on “infinite” plane

ϕm
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Measurement of Boundary Conditions

Aim:  
measure B   on infinite plane outside magnet


• plane // to cylinder face, 3 mm from it


Setup: 


• Halbach magnet dismounted from RF setup


• Hirst GM08 Gaussmeter


• cap by LNGS Mechanics Workshop with slots  
for inserting probe 7 mm apart on both diagonals
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Behavior Showing Two Poles

54 points each diagonal, repeated every 9° 


Total: 1080 points covering a r  20 cm circle area≃
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z (m)

COMSOL Computed Field

Given boundary conditions       solution of Laplace equation 


• using COMSOL simulation software based on advanced numerical methods 
(collab with dr. C.Rizza from UnivAq)


• Field computed in a 35 cm side cubic volume 
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Internal Field: Measurements + CERN Maps

From CERN Magnet characterization: Bx & By profiles as function of x & y, mediated in z 


To get z profiles: 


• Bx measurement for x,y=0 varying z through Gaussmeter (by Federico)


• Scale of Bx, By for every z according to the measured profile


• Bz scaled linearly from the values on face to the Bz=0 point (~2 cm far)         to be improved!
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Very Steep Bx Profile

Merging of                                                                                                              


Let’s have a look to Bx(x,y=0) vs z profile:


• Good matching of different B maps


• very steep magnitude increase:                 
from 0 to 1 T in ~15 cm 


• Sigmoidal shape, fitted with tanh
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simulations!
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A Compact Simple version of Accelerator Filter

Preliminary injection geometry: 5 sets of electrodes (2 bouncing + 1 top + 1 bottom each)  
                                                   to create very compact single channel accelerator filter 

Lot of things to take into account


1. Limited space in xy


• Tube for vacuum inside magnet cavity with ⌀ < 50 mm


• For RF: rigid space constraints to match with RF electrodes into trap  
                                                                                           (15 mm height x 37 mm width)


2. B field limit


• Too low B       too large Larmor radius; too high B        problems with electrons ejection


3. Electron energy (Ee) limit


• Too low E        limit in e-gun performances; too high E       too large Larmor radius
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Quick Drifts Recap during Injection
Framework:  
     (sorry) 

Bx increase in -z direction   
      drift in +y direction


To compensate it: 
E in +z direction needed


To let electrons drift along z:      
E in -y direction needed
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RF Setup: Injection & Slowdown Strategies

Electrodes setup:


• 5 electrodes’ sets of 2 cm length + RF ones


• dimensions matching with RF:  
 ➢ 8.2 mm distance in y,  
 ➢ 30 mm in x
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Voltages applied: 


• top injection electrodes following a sigmoidal (smoother) profile


• grounded injection bottom electrodes


• RF electrodes to minimize z-drift (still to optimize!)
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Potential map & isolines


Particle source


• B field - Energy compromise:

✓ 600 eV electron

✓ 6 cm far from magnet (Bx= 38 mT)


• Pitch angle of 50°


• Centered in xy plane
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RF Setup: Injection & Slowdown Strategies
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Minimum Detectable Energy, Still Too Fast

Preliminary CST results:


✓1T region reached 

• from 600 eV to ~10 keV 

   RF power ~0.7 fW      in principle 
                                      detectable


• 50 ns to reach RF region,  
450 ns to travel 5 cm of it


     good slowdown, still not enough to be detectable (minimum 30 s needed) 


Next steps: 

• find right RF voltages to keep e- @ same altitude (now too close to top electrode)

• Deeper result analysis with Lorentz4 (see N.Rossi talk)

μ
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From RF to Magnet Crossing Setup

Preliminary electrodes setup: 


• Symmetric  geometry:  
➢ 5 injection electrodes’ sets, 
➢ “RF electrodes” (reduced in length)  
➢ 5 ejection electrodes’ sets


• dimensions still matching with RF (not needed!)
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Voltages applied:


• Injection as previous setup 


• RF voltages matching 5th electrodes’ ones


• Ejection with mirrored voltages wrt center  
(∇B inversion      E in -z direction to compensate!)
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Potential map & isolines


Same particle source: 600 eV e- 6 cm far from magnet, 50° pitch angle


New trajectory simulation framework 
= Lorentz4 

• takes as input CST field maps


• reduced simulation time


• customizable post-processing
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From RF to Magnet Crossing Setup
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yz trajectory projection showing  
drifts balance


• +y (-y) drift along electrodes

• -y (+y) drift along gaps


asymmetries reflecting B field ones
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✓  Electron coming out from electrode system 


✓Good trajectory control despite poor segmentation


✓Kinetic energy from 600 eV to ~ 10 keV and viceversa 
in  ~ 30 cm!
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Efficiency Strongly Limited by Y-Dimension

Lorentz for (small) Montecarlo to simulate a real electron source features (e-gun ones)


• 2 mm diameter spot (pessimistic number)


• 5° angle spread 


Result: 6 over 30 potentially detectable


Lot of electrons lost in last electrodes set  
by hitting top or bottom one


• Still using dimensions matching trap constraints! Not needed for this setup


• Can enlarge a bit x-y dimensions (still ⌀ < 50 mm constraint)
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Road to Magnet Crossing Setup Optimization

Dimensions changing:


✓y distance from 8.2 to 15 mm


• x distance from 30 to 35 mm 
      higher y/x        less field uniformity ❌


• electrode length from 20 to 18 mm
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Voltages applied:  
same shape but optimized for new dimensions  
(only injection part tried for now)
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Promising Preliminary Results

Particle source: 700 eV e- (better for e-gun!)  
6 cm far from magnet, 50° pitch angle


Just a quick partial trial before coming here
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Promising features:


• electron altitude kept farer from electrodes


• smaller Larmor radius/y distance ratio
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Features:


• Ta disk = grounded Anode

• HV to accelerate electrons up to -20 kV

• Wehnelt 

• Focus system (Einzel lens)

• X/Y deflection plates


Critical points:


• Performances guaranteed from 1 to 20 keV 
        need to be tested @ 600/700 eV 

• Minimal working distance = 10 cm 
        -metal tube till setup starting point ?μ
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Our Electron Gun: Features & Critical Points
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How the Full Setup Looks Like: Some Upgrades
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Recap & Next Steps

✓Toy setup with only 5 injection electrodes sets worked       good starting point!


Time to 

• Increase segmentation (e.g. 1 cm electrodes)       more trajectory control

• optimize parameters (almost everything) 


Aims for each setup:


• RF: acceleration system till 18.6 keV + slowdown till 30 s in RF region

• Magnet Crossing: maximize efficiency  + possible detection setup


To Do: 

• Better measurement of B field inside magnet (eg. Bz profile)

• E-gun characterization @ 600/700 eV

μ
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BACKUP SLIDES
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A Versatile Setup 

Faraday cup &/or phosphor screen mounted on a feedthrough


✓Custom-made, in collaboration with LNGS Mechanics Workshop


✓Allows shifts on y-axis with sub-mm precision


✓Allows to completely remove beam monitoring unit  
from beam path
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Wehnelt as a Beam Intensity Filter 

What is?


• Tubular housing for cathode with fixed aperture


• Negative bias       secondary electric field in cathode proximity


How can be employed?


• Mid-range voltage       adjust beam divergence & uniformity         beam characterization                                                                  
                                                                                                      (spot size, I-V curve etc.)


• High voltage       reduce electron emission from cathode edges till complete beam suppression 
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possible needing for future usage as electron trap calibration source
Beam Intensity Filter
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Beam Current Optimized by Wehnelt 

Setup:


• Keithley 2450 SourceMeter + double Faraday cup


• Beam electron energy: 1 keV, 5 keV, 10 keV, 18.6 keV


• Source voltage (Vsource) set to 1.521 V


• Focusing & deflection voltages 
optimized through Phosphor screen for each energy


• Base pressure: 10-7 mbar


Results:


• Similar behaviors, different Vgrid optimizing beam current


• Better  ratio for lower electron energiesIbeam/Iem
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Up to 10-4 Reduction Factor 

Let’s define:   - “collection” efficiency  
                       - reduction factor 


Focusing on run @ 18.6 keV:


• beam current Ibeam maximized for Vgrid = 30 kV


•  from 11% to ~100% for Vgrid > 45 kV


•  > 10-4 for  Vgrid > 57 kV 

ϵ = Ibeam/Iem

r = Ibeam/Iem(Vgrid = 0V)
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Preliminary Estimate of Beam Size

Aims:  
estimate beam size + find correlation deflection voltage - position shift


Scan of 3 mm Faraday cup hole moving beam with deflection voltages 


• Iem fixed to 5 uA


• Vy from -240 V to 150 V 
 with 5 V steps
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Result = convolution of 
  - gaussian  
  (e-gun spatial current distrib)  
  - step function (FC hole)
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Sub-mm Spot Size

From 1st derivative of Ibeam vs Vy points (computed as Ibeam(Vyi) - Ibeam(Vyi-1) / Vyi - Vyi-1 )


• Gaussians reflecting beam spatial distribution with


- Distance (peak to peak)  170 V = FC hole diameter = 3 mm  1 V = 0.0176 mm


-  = 30  0.3 V (fitted from 2nd gaussian)   = 0.53 mm

≃

σ ± σ
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Recap & Next Steps

✓ Beam Current with reduction factor 10-4 exploiting 
Wehnelt grid 


✓ 1st beam size estimate of ~0.5 mm  
+ correlation deflection voltage - position shift


✓ I vs V from 0.1 µA to 180 µA


✓ Setup to measure B   on extended plane ready 
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T

 TO DO 

Beam Current with femtoammeter  
 to probe higher reduction


 Estimate using manual shift via 
feedthrough 

+ optimize focusing voltage 


 Curve down to pA (or fA)


 Measurement, COMSOL solution,  
File Upload, Geometry implementation, 

Multiparticle Simulation


Helmholtz coils cage 


