
Luca Negri

   

Belgian-Dutch gravitational waves meeting
Nijmegen, 27 October 2025

Exploring the feasibility of neural 
likelihood estimator for fast 

parameter estimation.



2

Parameter estimation

Answers lies in the Bayes theorem: 

How can we link this …

Posterior:
what we want!

Likelihood Prior

Evidence
Can be used for 
model comparison

… to this?

Credit : Caltech

Parameter estimation 
answers a very simple 
question:

But to fully represent the high dimensional space (9-17 dim) 
You need to sample the system 𝜪(106), 𝜪(107) times



Parameter Estimation in the future

Next gen of interferometers will come with a new set of 
challenges for parameter estimation:

⏳ ~1000 times more signals  
⏳ Signals will be louder        
⏳ Signals will be longer         
⏳ Overlapping signals           

Same signal often analyzed multiple times with
● different noise models
● different waveforms
● different physics

Cannot have one model to fit them all!

Credit : Evan Hall, Salvatore Vitale/ MIT

3

We are not ready 
to analyze this 
data!



Neural Likelihood Estimators: the most flexible solution?

4

Many ML based solutions proposed to speed up computations 
and reduce costs , each with its own strengths and 
weaknesses:

● Neural posterior estimators 
● Neural ratio estimators 
● Neural proposal estimators 
● Neural likelihood estimators:

- Fix the data, and the likelihood function depends 
only on the parameters (9-17 dimensions)

- Approximate the likelihood function  ℝ15→ ℝ1 with 
a neural network 

PROs
✅ Speedup of single likelihood evaluation of  >105 

✅ No need for special hardware (CPUs only)
✅ Plug and play: avoids expensive pre-training
✅ FLEXibility! Any sampler, waveform or prior works.

BUT … :
🤔 New NN trained on the fly for every signal
🤔 Training adds time to full inference
🤔 Can NNs even be accurate enough?

Takes ms to s to 
evaluate

Takes less than a μs
even on modest 

hardware 

 



The FLEX cycle

5

1: Generate training samples

2: Train Neural Likelihood
3: Run sampler on the Neural 
likelihood

4: Check results and retrain 



6

Phase 1 : Generate initial training data
Samples obtained through an annealed series of tempered KDEs, which interpolate smoothly 
between prior and posterior, similar to Sequential Monte Carlo (SMC)

For the algorithm to be effective 
Ntrain << NMCMC (106-7) 



Phase 2 :  Training the network

7

Keep network architecture as simple as 
possible:

●  Small resnet, fully connected 
● ~15k parameters  
● Fast to train, fast to analyze

Weights boost importance of samples in 
low density regions of parameter space



Phase 3  : Running MCMC

Posterior obtained through highly 
vectorizable MCMC sampler with parallel 
tempering (eryn [1])

● Very modest hardware (CPU)
● The PE run on the FLEX likelihood 

takes ~ 1 minute on even 1 CPU 

But … what if the results are off? 

8

[1] N. Karnesis et al.: 2023:



Calculating Effective Sample Size (ESS):  

Phase 4  : Check and, if necessary, retrain

9

 

If ESS/Npost< Threshold (50%) restart cycle from phase 1, 
with added training samples from the (temporary) posterior 



Results: setup

10

Which signal type will we tackle? 
Start with the “easiest” problem in GWs:

● Heavy mass, short duration, BBHs [20-100 
chirp mass]

● SNR<40
● 2-3 detector networks, O4-like sensitivities
● Align spin (no precession) IMRPhenomD
● Distance & phase analytical marginalization
● Sampling over 9 parameters :

 

FLEX Hyperparameters : 
● Initial waveforms evaluations :  1e5
● NN Training epochs (per cycle): 700
● Retraining samples (per cycle): 2e4
● Retraining samples temperature: 4
● ESS /Ntot  threshold : 50%
● Ntot : 5000
● Max number of cycles : 6

Optimized to minimize likelihood evaluations 
(max 2e5)

GW150914-like 
signals



Results: Robustness tests

11

PP-plot shows promising results! 99 runs on simulated signals

● Only 1 did not reach the ESS threshold of 50% 
● Half of the runs converged after 2 cycles



Results: 150914

12

Standard test with real data, GW150914:

60 times 
reduction

Model Time 
(on same 
hardware)

Number of 
Waveforms

Eryn (blue) ~12 hours ~ 1.3e7

FLEX (orange) ~36 minutes ~ 1.8e5

still much room for 
optimization!



Changing sampler (SMC)

The runs so far have been presented with MCMC, so 
we do not have access to the evidence.

But the FLEX-NLE object, once trained can be used 
with other samplers afterwards, like an SMC one

13

Model Log evidence Time 

pocomc vanilla 
(blue)

286.09 50 mins x 16 cores

pocomc FLEX 
(orange)

285.06 3 mins x 1 core 
(after training) 

GW150914:



Results: consistency and timing between waveforms

14

GW150914:
Model (FLEX) Log 

evidence

IMRPhenomXAS 285.10

SEOBNRv5_ROM 285.05

NRSUR7dq4 284.67

Consistency between 
waveforms shows that the 
algorithm is robust



Results : But can we go faster?

15

Run on CPU: Run on GPU:



Conclusions

What has been done : 

● Neural Likelihood seem to be a 
viable and reliable option for fast 
parameter estimation 

● Get compatible results with 
standard PE ~50 times less 
likelihood evaluation 

16

To Dos 📝
● Expand to different signals 

(BNSs,3G, precession)
● FLEX can be improved, Possible 

optimizations:
○ Final PE stage 🏍
○ Training scheme 🏍🏍
○ Initial samples 🏍🏍🏍🏍



Thank you!
💪



Limitations of the algorithm

😕 Priors too broad (steep 
logL) 

😕 High SNR (hard to find 
the logL peaks)

😕 Multimodalities (mode 
collapse, mode confusion)

18

🔧 Narrower priors 
🔧 More training samples 

(costly …)
🔧 Smarter generation of 

initial samples
🔧 Better parametrizations



Phase 1 : Annealed KDE
Using weighted Kernel Density Estimation (KDE) allows us to get progressively 
less-awful approximations of the posterior

1. Assign weights to each sample with softmax 

2. Train a KDE on {𝜽i } with weights {wi}

3. Take K new samples from the KDE
and calculate their likelihood

4. Add new samples to {𝜽i } and 
repeat with lower T

19



Backup - Check NN performance.

20

❌ Misses one 
peak

✅ Very accurate in 
high likelihood 
regions! 

❌ Inaccurate in low 
LLhood regions

❌ What is even 
happening here

✅ Very accurate in 
high likelihood 
regions! 
(apparently this is 
enough to guarantee 
convergence!)



Backup - BNSs

21



Differential evolution initial samples

22


