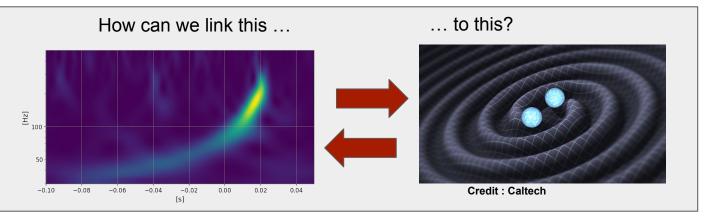
Exploring the feasibility of neural likelihood estimator for fast parameter estimation.

Luca Negri

Belgian-Dutch gravitational waves meeting Nijmegen, 27 October 2025

Parameter estimation

Parameter estimation answers a very simple question:



Prior

Likelihood

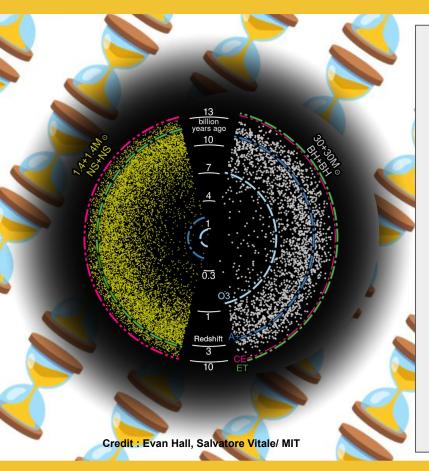
Answers lies in the **Bayes theorem**:

Posterior:
$$-p(\vec{\theta}|y, \mathcal{M}) = \frac{p(y|\vec{\theta}, \mathcal{M})p(\vec{\theta}|\mathcal{M})}{p(y|\mathcal{M})},$$
what we want!

But to fully represent the high dimensional space (9-17 dim) You need to sample the system $O(10^6)$, $O(10^7)$ times

Evidence
Can be used for model comparison

Parameter Estimation in the future



Next gen of interferometers will come with a new set of challenges for parameter estimation:

I

~1000 times more signals

Signals will be louder

Signals will be longer

Overlapping signals

We are not ready to analyze this data!

Same signal often analyzed multiple times with

- different noise models
- different waveforms
- different physics

Cannot have one model to fit them all!

Neural Likelihood Estimators: the most flexible solution?

Many ML based solutions proposed to speed up computations and reduce costs, each with its own strengths and weaknesses:

- Neural posterior estimators
- Neural ratio estimators
- Neural proposal estimators
- Neural likelihood estimators:
 - Fix the data, and the likelihood function depends only on the parameters (9-17 dimensions)
 - Approximate the likelihood function $\mathbb{R}^{15} \rightarrow \mathbb{R}^1$ with a neural network

Takes ms to s to evaluate
$p(\vec{\theta} y, \mathcal{M}) = \frac{p(y \vec{\theta}, \mathcal{M})p(\vec{\theta} \mathcal{M})}{p(y \mathcal{M})},$
Takes less than a µs even on modest hardware
$p(\vec{\theta} y, \mathcal{M}) = \frac{p(\vec{\theta} \mathcal{M})}{p(y \mathcal{M})},$

PROs

No need for special hardware (CPUs only)

Plug and play: avoids expensive pre-training

FLEXibility! Any sampler, waveform or prior works.

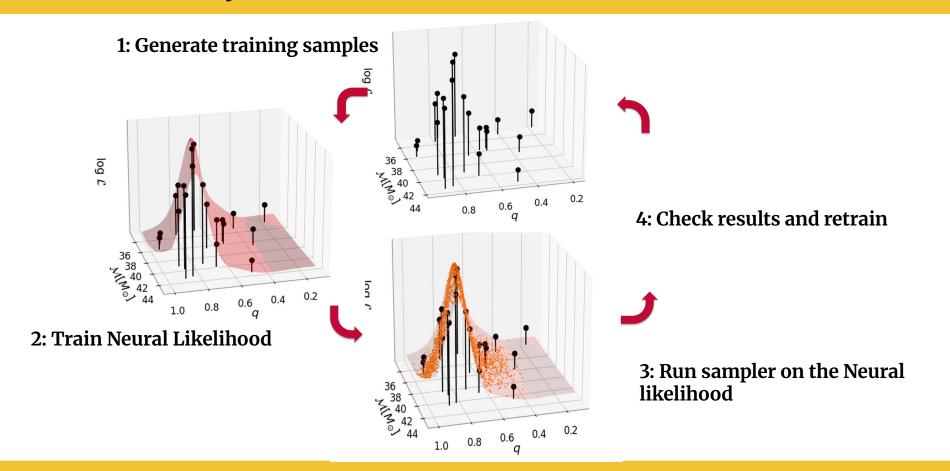
BUT ...:

New NN trained on the fly for every signal

Training adds time to full inference

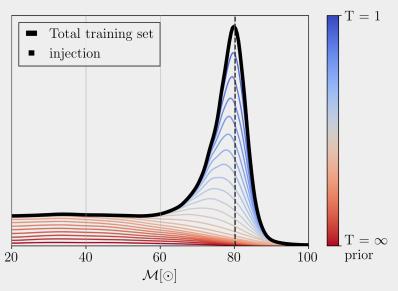
Can NNs even be accurate enough?

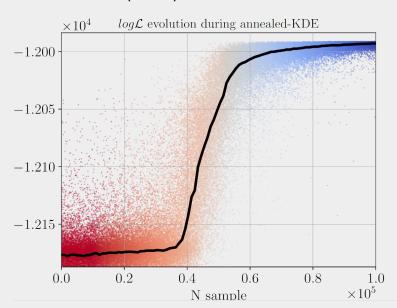
The FLEX cycle



Phase 1: Generate initial training data

Samples obtained through an annealed series of tempered KDEs, which interpolate smoothly between prior and posterior, similar to Sequential Monte Carlo (SMC)





For the algorithm to be effective $N_{train} << N_{MCMC} (10^{6-7})$

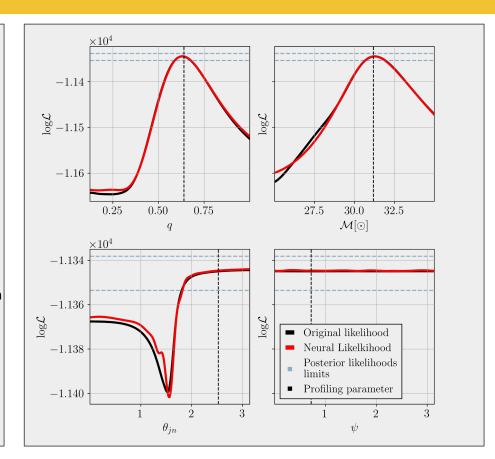
Phase 2: Training the network

Keep network architecture as simple as possible:

- Small resnet, fully connected
- ~15k parameters
- Fast to train, fast to analyze

Loss =
$$\frac{1}{N_t} \sum_{i=0}^{N_t} (e^{\log \mathcal{L}(\theta_i)} - e^{\text{NN}(\theta_i)})^2 w_i$$

Weights boost importance of samples in low density regions of parameter space

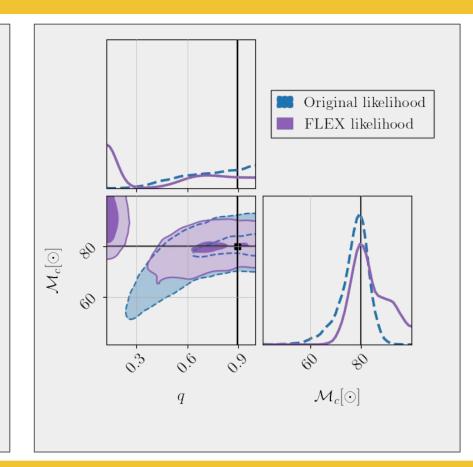


Phase 3: Running MCMC

Posterior obtained through highly vectorizable MCMC sampler with parallel tempering (eryn [1])

- Very modest hardware (CPU)
- The PE run on the FLEX likelihood takes ~ 1 minute on even 1 CPU

But ... what if the results are off?



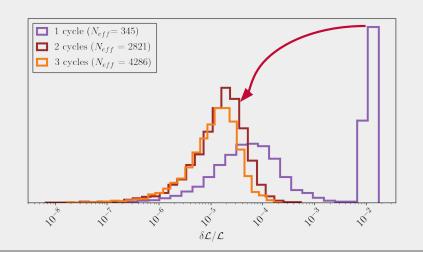
[1] N. Karnesis et al.: 2023:

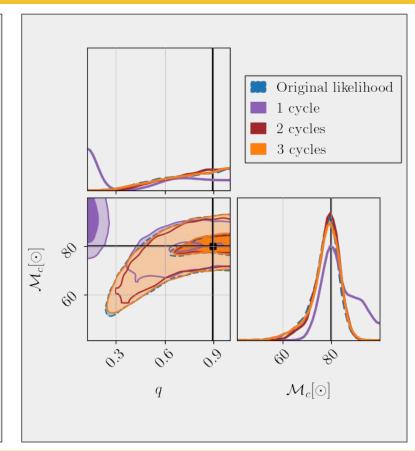
Phase 4: Check and, if necessary, retrain

Calculating Effective Sample Size (ESS):

$$w_i = \mathcal{L}(\theta_i)/\text{NN}(\theta_i), ESS = \frac{(\sum_i w_i)^2}{\sum_i w_i^2}$$

If ESS/N_{post}< Threshold (50%) restart cycle from phase 1, with added training samples from the (temporary) posterior



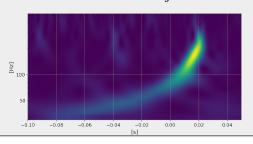


Results: setup

Which signal type will we tackle?

Start with the "easiest" problem in GWs:

- Heavy mass, short duration, BBHs [20-100 chirp mass]
- SNR<40
- 2-3 detector networks, O4-like sensitivities
- Align spin (no precession) IMRPhenomD
- Distance & phase analytical marginalization
- Sampling over 9 parameters : $[\mathcal{M}, q, \chi_1, \chi_2, \theta_{jn}, \psi, \text{zenith, azimuth, } t_{det}]$



GW150914-like signals

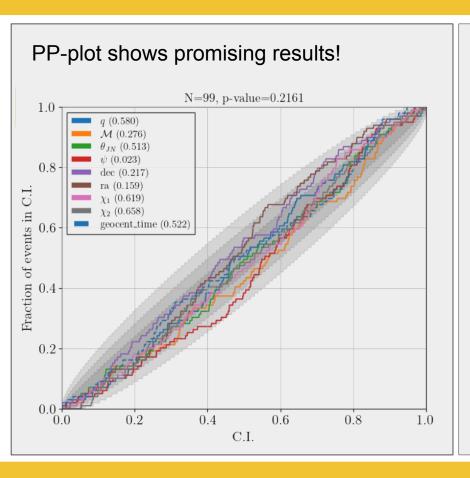
FLEX Hyperparameters :

Initial waveforms evaluations: 1e5
NN Training epochs (per cycle): 700
Retraining samples (per cycle): 2e4
Retraining samples temperature: 4
ESS /N_{tot} threshold: 50%
N_{tot}: 5000

Max number of cycles:

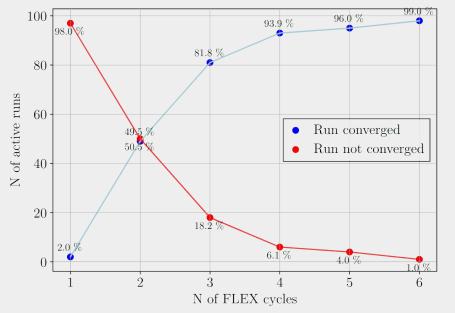
Optimized to minimize likelihood evaluations (max 2e5)

Results: Robustness tests

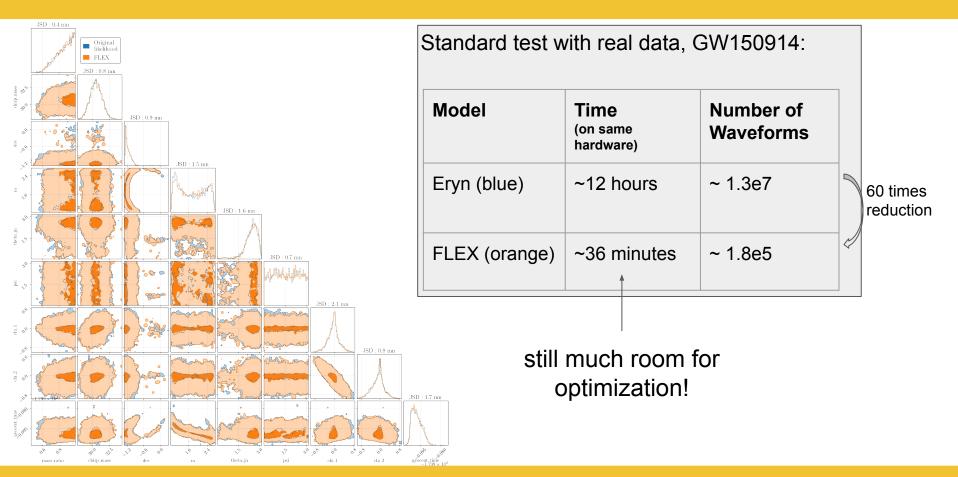


99 runs on simulated signals

- Only 1 did not reach the ESS threshold of 50%
- Half of the runs converged after 2 cycles



Results: 150914



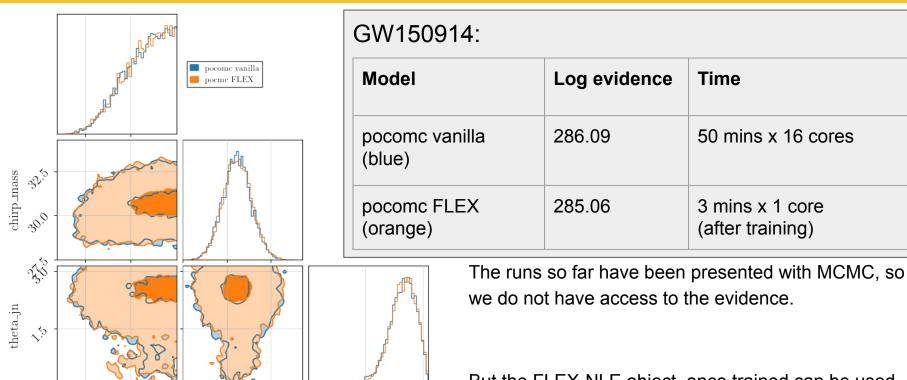
Changing sampler (SMC)

32,5

theta_jn

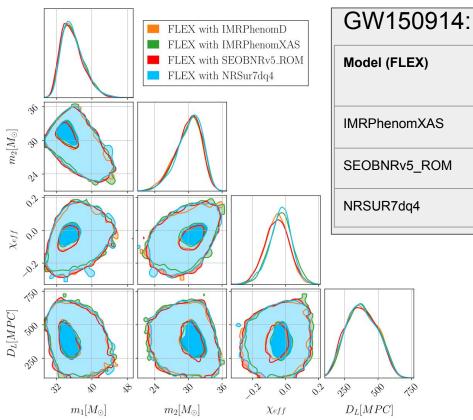
chirp_mass

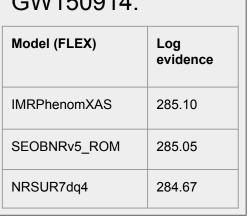
mass_ratio

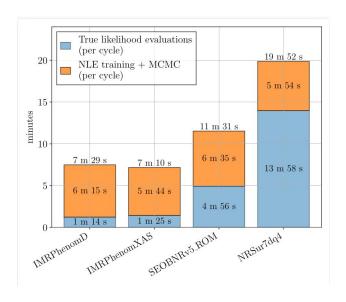


But the FLEX-NLE object, once trained can be used with other samplers afterwards, like an SMC one

Results: consistency and timing between waveforms



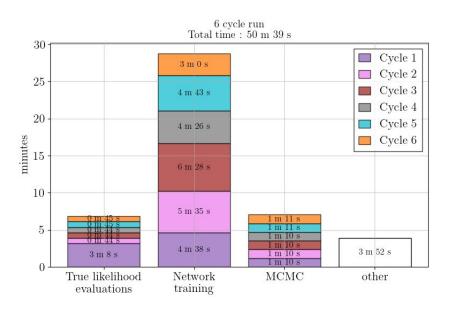




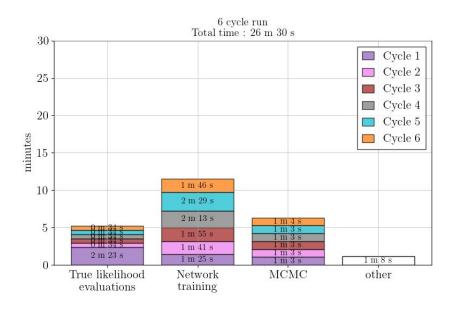
Consistency between waveforms shows that the algorithm is robust

Results: But can we go faster?

Run on CPU:



Run on GPU:

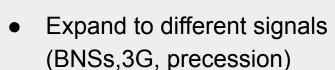


Conclusions

What has been done:

- Neural Likelihood seem to be a viable and reliable option for fast parameter estimation
- Get compatible results with standard PE ~50 times less likelihood evaluation

To Dos 📝

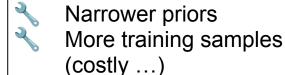


- FLEX can be improved, Possible optimizations:
 - Final PE stage 👟
 - Training scheme
 - Initial samples 😹 🞉 🎉

Thank you!

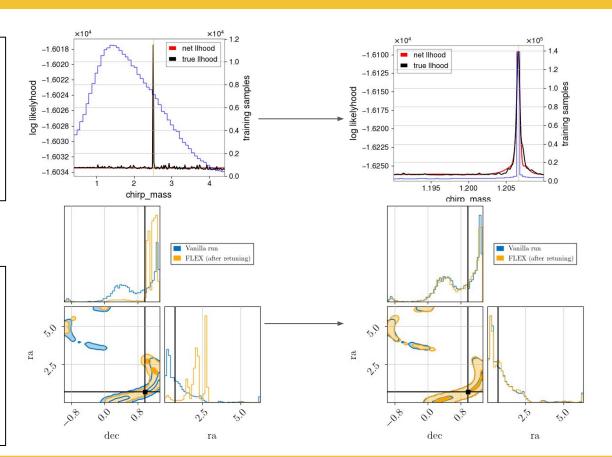
Limitations of the algorithm

- Priors too broad (steep logL)
- High SNR (hard to find the logL peaks)
- Multimodalities (mode collapse, mode confusion)



Smarter generation of initial samples

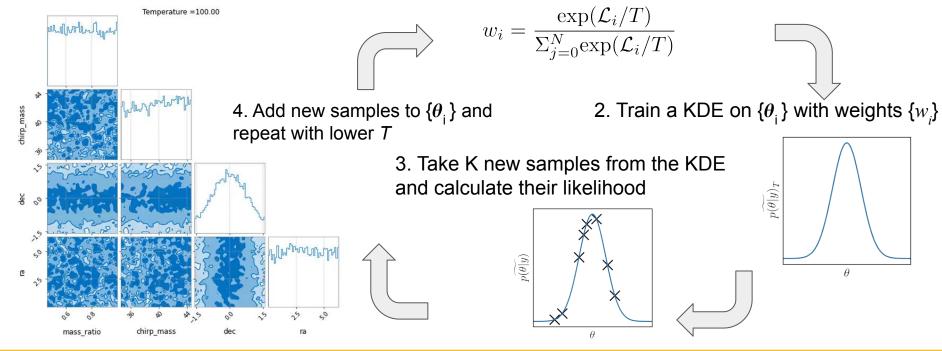
Better parametrizations



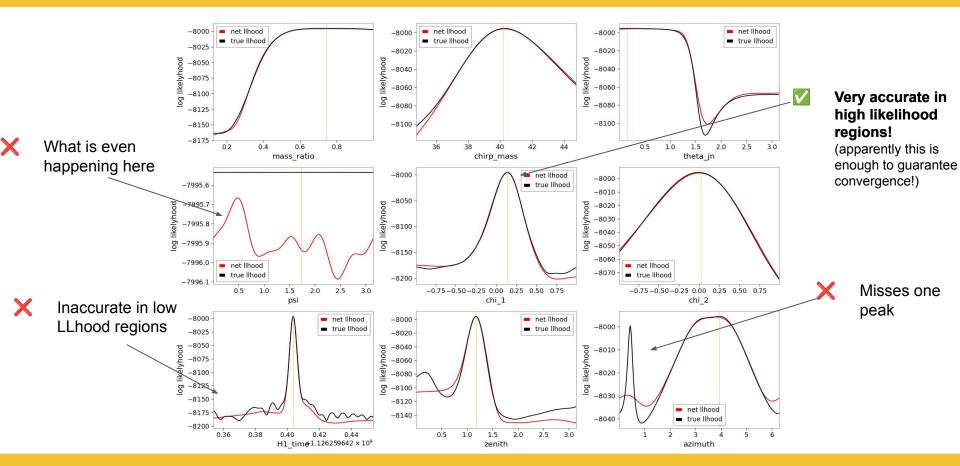
Phase 1: Annealed KDE

Using weighted Kernel Density Estimation (KDE) allows us to get progressively less-awful approximations of the posterior

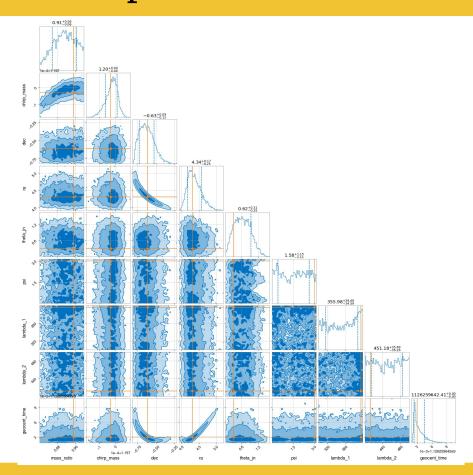
1. Assign weights to each sample with softmax



Backup - Check NN performance.



Backup - BNSs



Differential evolution initial samples

