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About ‘East Surrey G.R.’ 

 
• Author got involved in a number of projects related to 

Analytical Models for Isolated Matter Distributions. 

• Decided to bring them all ‘under one roof’; Institution set 
up specially for this. Represent UK in ICRANET (Ruffini). 

• Other Current Ongoing Projects include:  

• ‘Rotational/Tidal deformations beyond the Hartle-Thorne 
approximation’ (GRG24 Poster, Glasgow, July 2025).  

• ‘An Exact Gravitational Wave from a bounded source’ (5th 
Scandinavian Meeting on GWs, Copenhagen, May 2025) 

• ‘Bondi-Sachs perturbations of the Schwarzschild metric: 
Rotating Tri-axial ellipsoids’ (GraSP24 Poster, Pisa, 2024). 

 

 



Relevant Background 

 
• Rotating Neutron Stars are a source of Continuous Waves, 

which can be used to infer properties of the star, e.g. EOS. 

• Non-uniform deformation: Transient quadrupole moment. 

• Incompressible interior is mathematically the simplest case    

• Chandrasekhar (1967) – Post-newtonian Jacobi Ellipsoids 
for interior. Textbook examples use asymptotic vacuum. 

• Blanchet-Damour (1990) – Near zone and Radiating zone 

• Neugebauer-Meinel (2008)  - Boundary value problem 
approach to stationary rotating stars 

• Within the scope of Linearized Gravity, we can exploit 
the analogy with Electromagnetism to solve the equations.   

 

 



Aims of this lecture  

• Review of the ‘zonal’ decomposition, and its limitations.  

• Recap the MacLaurin and Jacobi Ellipsoids, and attempt to 

re-frame them in the context of Linearized Gravity, for 

both interior and vacuum. 

• Introduce the concept of a ‘small’ non-uniform 

deformation, and how it simplifies all the equations. 

• Obtain the analytical form of the radiating external field. 

• Describe the Boundary Value Problem approach. 

• Compare with the Bondi-Sachs quasi-spherical 

Schwarzschild perturbation (time-permitting)   

 

 



Zonal Decomposition  

• Decompose the exterior region into a ‘Near Zone’, which 
is pseudo-stationary, and an intermediate zone, where 
radiation effects dominate (Blanchet-Damour, 1990).    

 

 

 

 

 

• But this decomposition is only valid if the emitted 
wavelength is larger than the size of the source. In the 
current work, we do not make this assumption!    

 



MacLaurin and Jacobi 

Ellipsoids (1)  
• Consider a ‘squashed ball’. Both equatorial axes have 

the same size, but the polar axis is different. 
Shorter=Oblate, Longer=Prolate. 

• When viewed side-on, i.e. looking towards the equator, 
the shape of the body does not change during rotation, 
and therefore is stationary. 

• But if the two equatorial axes are of different size, then 
when viewed from side-on, the shape does change 
during rotation, and is called a ‘Jacobi’ ellipsoid. In 
Electromagnetism, this would result in EM radiation. 



MacLaurin and Jacobi 

Ellipsoids (2)  
 

 



MacLaurin and Jacobi 

Ellipsoids (3)  
• MacLaurin Ellipsoids are completely solved in Newtonian 

theory, for arbitrary rotation rates and flattening. Solution 

expressed in terms of Spheroidal Legendre functions. 

• Neugebauer-Meinel (2008) demonstrated that by treating 

the setup as an interior-exterior boundary value problem, 

the Maclaurin axis-ratio relation arises without evaluating 

complicated integrals for the interior! 

• Jacobi Ellipsoids cannot be solved in closed form; interior 

produces elliptic integrals, and exterior produces 

ellipsoidal harmonics. New approach required! 

• Now reframe all this in Post-Minkowskian approximation. 

 



Linearized Gravity   

• To lowest order in 1 𝑐2  get the decoupled EFEs: 

• ⊡ ℎ 𝑎𝑏= 𝑇𝑎𝑏 in the Harmonic Gauge 

• Harmonic Gauge may be somewhat misleading! 

• OR, in the Transverse Gauge (TT=Transverse 

Traceless, obtained from Projection Operator), 

• △ Φ𝑁= 𝜌      (‘Coulomb’ Poisson Equation) 

• △ ℎ 𝑇𝑇
0𝛾= 𝑇(𝑇𝑇)

0𝛾  (‘Solenoidal’ Poisson Eqn) 

• ⊡ ℎ 𝑇𝑇
𝛽𝛾= 𝑇(𝑇𝑇)

𝛽𝛾   (Wave Equation) 

 



Helmholtz Equation (1) 

• Fourier Transforming the Wave Equation leads to a 

Helmholtz type equation, which has no time-dependence. 

• △ 𝐻 + 𝑘𝐻 = τ  (k = wavenumber) 

• Mathematically speaking, the Poisson equation is a k=0 

subcase of the Helmholtz equation. 

• Previously, we also said that the spheroidal case is a 

stationary subcase of the tri-axial case. Therefore, the 

Helmholtz equation must reduce to the Laplace equation.  

• Create a single solution procedure for the Helmholtz 

equation, with the Laplace solution procedure as subcase. 

 

 

 

 

 



Helmholtz Equation (2) 

• Focusing on the vacuum part for now, in tri-axial 

ellipsoidal coordinates the Helmholtz equation can be 

shown to admit a separation of variables.  

• That separation would normally produce ellipsoidal 

harmonics, but in the spheroidal (here stationary) case, that 

same separation results in Legendre Polynomials.   

• We now make the demand: If the two equatorial axes are 

only slightly different, can the solution be represented as: 

• Stationary Legendre Polynomials + a radiative correction? 

 

 

 

 

 



Perturbation of axes 

• YES! Making that assumption about the axes allows the 

Laplacian operator to decompose in a similar manner. 

• Each of the 3 resulting ODEs is of the form (a,b are foci): 

• 𝑠4 − 𝑠2 𝑎2 + 𝑏2 + 𝑎2𝑏2 𝑑2𝐹

𝑑𝑠2
 − 𝑠 𝑎2 + 𝑏2 − 2𝑠2 𝑑𝐹

𝑑𝑠
=

𝐹 −𝑚𝑘2𝑠4 − 𝑞𝑠2 − 𝑝  

• Ansatz. Let b = a + m, and F = f(s) + m*h(s). m=0 simply 

gives Legendre Equation in oblate spheroidal coordinates. 

• When the first-order equation is solved, the homogeneous 

part gives Legendre functions, and the inhomogeneous part 

gives a lengthy combination of rational functions and logs.    

 



Boundary Conditions 

 

 

 

 

 

 

 

• Darmois/Lichnerowicz conditions: At boundary, match 

• ℎ𝐸𝑋𝑇 = ℎ𝐼𝑁𝑇 

• 𝜕𝑛ℎ𝐸𝑋𝑇 =   𝜕𝑛ℎ𝐼𝑁𝑇  

 



SUMMARY  

 
• Reviewed the (classical) MacLaurin and Jacobi Ellipsoids, 

and their reformulation in Linearized GR.  

• Argued that in order to get explicit closed-form solutions 
over the whole vacuum, a perturbation decomposition must 
be made pertaining to the two equatorial axes and foci. 

• Used this decomposition to solve both the Laplace and 
Helmholtz equations. Solutions useful in both EM and GR.   

• Still remaining – make a similar decomposition for the 
interior (with the mass density being constant), and apply 
boundary conditions of potentials and normal derivatives. 

• Publications to follow! 

 

 

 

 

 

 



THANK YOU!  

 
 

 

 

 

 

 


