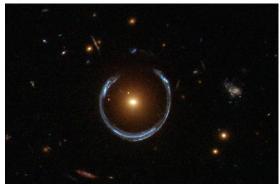
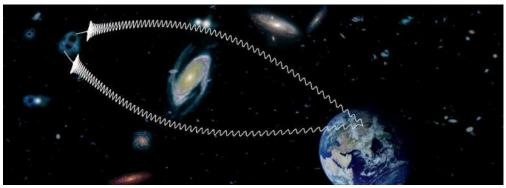
Using the null stream to detect strongly lensed gravitational waves

Jef Heynen, Soumen Roy, Justin Janquart

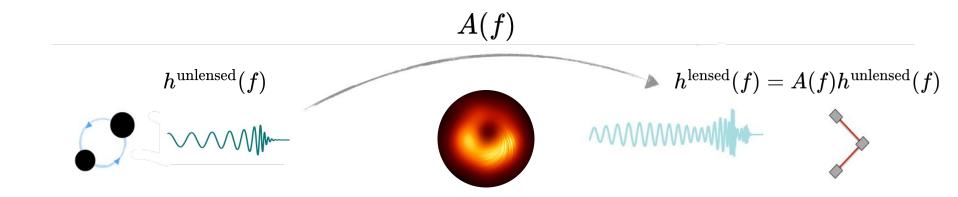
Belgian-Dutch GW Meeting, Nijmegen, 27 October 2025




Gravitational wave lensing

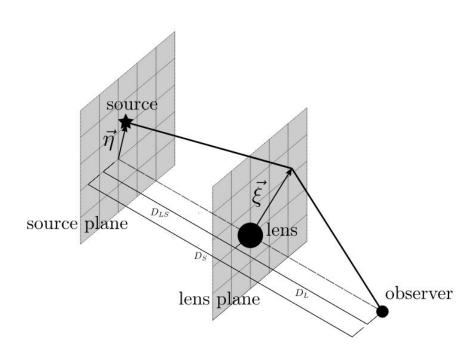
 We know EM waves can be deflected due to the spacetime curvature caused by massive bodies along their way

General relativity predicts the same must happen for gravitational waves


Credits: Hubble

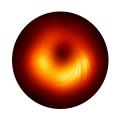
Credits: UC Santa Barbara

Gravitational wave lensing

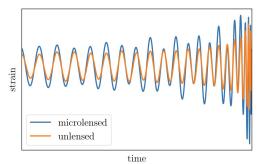

Effect of lens on gravitational wave captured by amplification factor

Amplification factor

Amplification factor can be written as a Fresnel diffraction integral:


$$A(f) \propto \int dec{\xi} \, e^{2\pi i f \, t_d(ec{\xi},ec{\eta})}$$

Source: Cheung et al. 2021

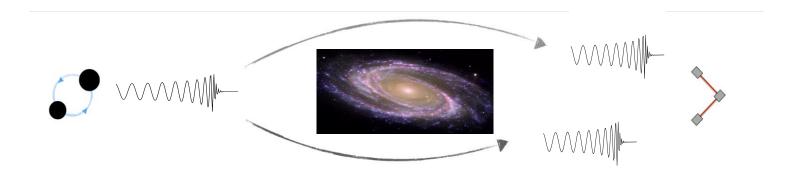

Different regimes of lensing

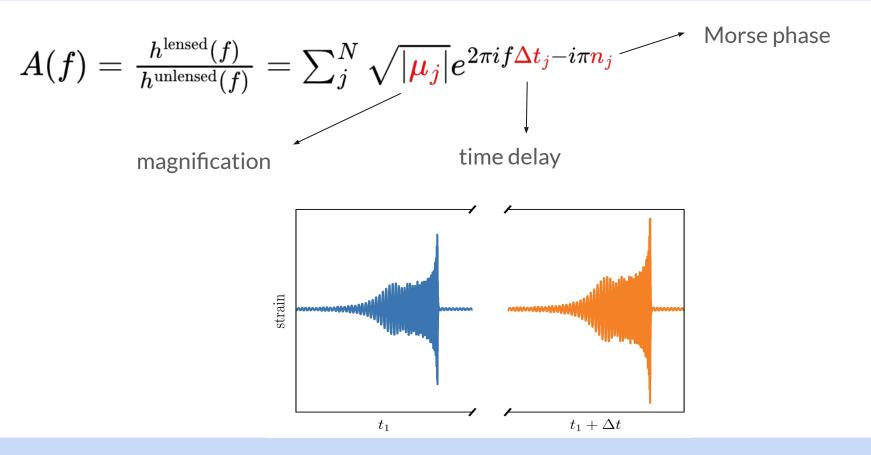
Wave optics: $\lambda_{GW} \sim R_S$

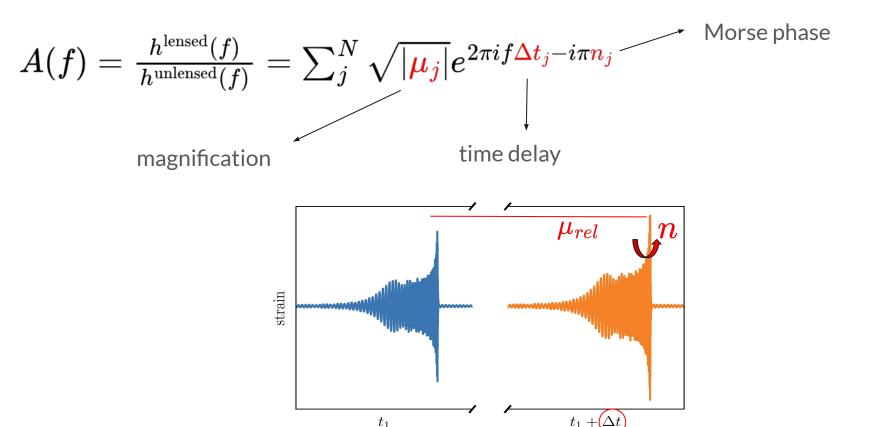
Full integral has to be solved

frequency dependent modulation of signal

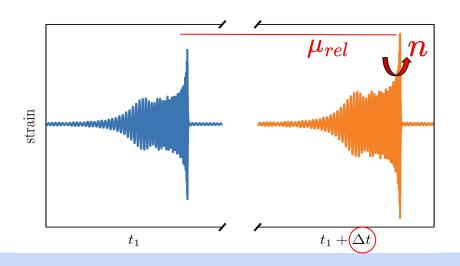
Geometric optics: $\lambda_{GW} \ll R_S$

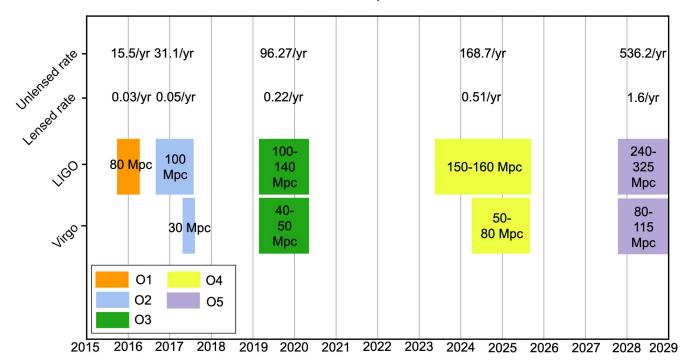

Stationary phase approximation applies


Only contributions of points where time delay is stationary: $\partial t_d(\vec{x}, \vec{y})$


Amplification factor

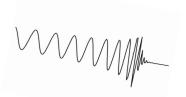
In geometric optics, the amplification factor reduces to sum of "images"

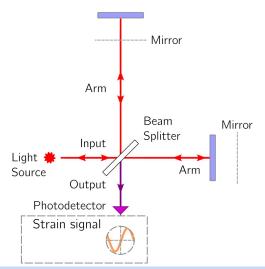

$$A(f) = rac{h^{ ext{lensed}}(f)}{h^{ ext{unlensed}}(f)} = \sum_{j}^{N} \sqrt{|oldsymbol{\mu_j}|} e^{2\pi i f oldsymbol{\Delta t_j} - i \pi oldsymbol{n_j}}$$



Repeated magnified and phase shifted copies of the same GW

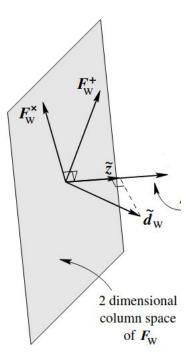
Strong lensing rate


Based on population of galaxies, estimates of lensing rates can be made (e.g. Ng et al. 2018; Wierda et al. 2021; Xu et al. 2022)


Gravitational wave data

- GW polarizations are coupled to antenna response functions
- In detector ρ , we have the data stream

$$d_
ho(t) = F_
ho^+(lpha,\delta) h_+(t-\Delta t_
ho) + F_
ho^ imes(lpha,\delta) h_ imes(t-\Delta t_
ho) + n_
ho(t)$$


11

Null stream

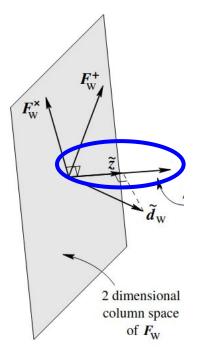
• Null stream: linear combination of data streams in detector network such that GW signal is cancelled:

Find projection matrix that projects GW signal away \rightarrow

$$\sum_{\sigma}^{D}P_{
ho\sigma}^{
m null}d_{\sigma}=n_{
ho}$$

Credits: Chatterji et al. 2006

Null stream

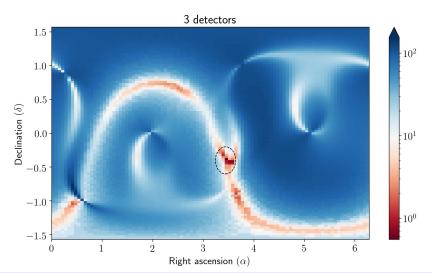

• **Null stream:** linear combination of data streams in detector network such that GW signal is cancelled:

Find projection matrix that projects GW signal away →

$$\sum_{\sigma}^{D} P_{
ho\sigma}^{
m null} d_{\sigma} = n_{
ho}$$

• For that, write in matrix form:

$$ilde{\mathbf{d}} = \mathbf{F} ilde{\mathbf{h}} + ilde{\mathbf{n}} \hspace{0.5cm} \mathbf{F} = egin{bmatrix} F_1^+(lpha,\delta,t_c) & F_1^ imes(lpha,\delta,t_c) \ dots & dots \ F_D^+(lpha,\delta,t_c) & F_D^ imes(lpha,\delta,t_c) \end{bmatrix} \hspace{0.5cm} ilde{\mathbf{h}} = egin{bmatrix} h_+ \ h_ imes \end{bmatrix}$$



Credits: Chatterji et al. 2006

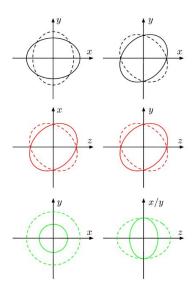
Null stream

ullet Null operator is then constructed as: $P^{
m null}={f 1}-{f F}({f F}^\dagger{f F})^{-1}{f F}^\dagger$

ullet Null energy is inner product of null stream with itself: $E_{
m null}= ilde{f d}^\dagger P^{
m null} ilde{f d}$

Jef Heynen, UC Louvain

Credits: Soumen Roy


14

Use cases

Burst search pipelines to veto between glitch and burst by looking at coherent energy [Sutton et al. 2010, Drago et al. 2020]

TGR pipelines to search for extra polarizations [Wong et al. 2021]

Jef Heynen, UC Louvain

One detection by D+D' Strongly lensed pair detected by D and D' (if we account for magnification detectors and time and morse phase shift)

16

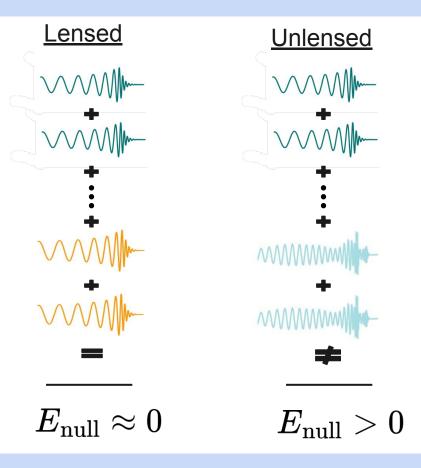
Strong lensing null stream

Strongly lensed pair:

$$ilde{h}_1^L(f) = \sqrt{\mu_1} e^{2\pi i f t_1 - i \pi n_1} ilde{h}^U(f) \qquad \qquad ilde{h}_2^L(f) = \sqrt{\mu_2} e^{2\pi i f t_2 - i \pi n_2} ilde{h}^U(f)$$

Construct null projector in the same way as before but with modified **F**:

$$P^{
m null} = {f 1} - {f F}({f F}^{\dagger}{f F})^{-1}{f F}^{\dagger} \hspace{1cm} {f F} = egin{bmatrix} F_1^+(lpha,\delta) & F_1^ imes(lpha,\delta) \ dots & dots \ F_D^+(lpha,\delta) & F_D^ imes(lpha,\delta) \ \sqrt{\mu_{21}}e^{-i\pi n_{21}}F_{1'}^ imes(lpha,\delta,t_{21}) & \sqrt{\mu_{21}}e^{-i\pi n_{21}}F_{1'}^ imes(lpha,\delta,t_{21}) \ dots & dots \ \sqrt{\mu_{21}}e^{-i\pi n_{21}}F_{D'}^ imes(lpha,\delta,t_{21}) & \sqrt{\mu_{21}}e^{-i\pi n_{21}}F_{D'}^ imes(lpha,\delta,t_{21}) \end{bmatrix}$$

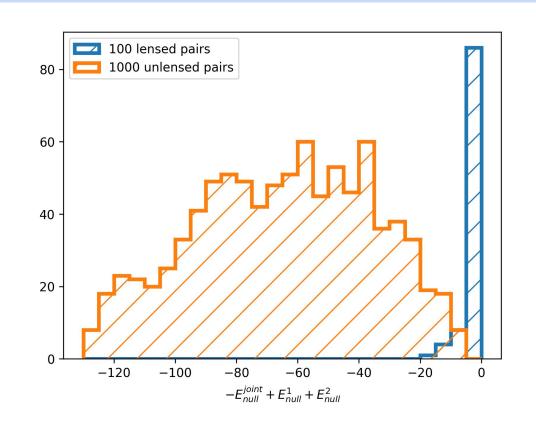

ightarrow p^{null} ill project away strongly lensed GW signal

Strong lensing null stream

Only valid when the pair is genuinely lensed and at true parameters

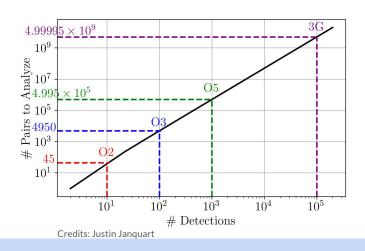
 When pair is unrelated, signal will not be projected away, leaving residual null energy

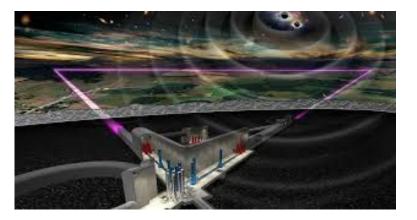
• In case of no noise: →



Validity

- Take a reconstruction of the waveform (here: maximum likelihood waveform obtained from PE)
- Sample over μ_{21} , n_{21} , t_{21} , α , \square


Compute null energy of each sample


Take mean of obtained distribution

Final objective

- Make this low-latency pipeline to test lensing hypothesis without relying on PE results
- A quick way to filter out unrelated pairs
- Waveform independent → important for long signals

Credits: Einstein Telescope

PE independence

- Use statistical properties:
 - \circ Under gaussian and stationary noise: $E_{
 m null}= ilde{n}_lpha^\dagger P_{lphaeta}^{
 m null} ilde{n}_eta\sim\chi_{
 m DoF}^2$

- Use network correlation coefficient [Klimenko et al. 2008] as a veto test: \overline{E}_{r}
- Accurate time-frequency analysis required

Conclusions

• Number of strong lensing candidates will drastically increase the coming years

Quick way needed to filter out unrelated events

Strong lensing null stream can be used to look for related pairs

Making this idea PE independent still work in progress

Conclusions

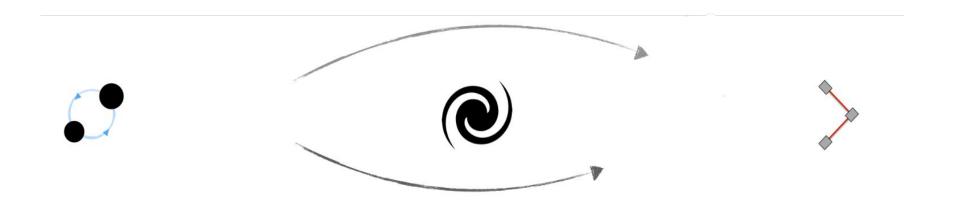
• Number of strong lensing candidates will drastically increase the coming years

Quick way needed to filter out unrelated events

Strong lensing null stream can be used to look for related pairs

• Making this idea PE independent still work in progress

Thank you for listening!


Low latency

- Go full Bayesian:
 - \circ Under gaussian and stationary noise: $E_{
 m null}= ilde{n}_lpha^\dagger P_{lphaeta}^{
 m null} ilde{n}_eta \sim \chi_{
 m DoF}^2$
 - Sample with chi-squared likelihood and get Bayes factor
 - Need a good time and frequency analysis to make this efficient
- Go cWB
 - Use network correlation coefficient [Klimenko et al. 2008] as a veto test:

$$rac{E_{
m coh}}{E_{
m null} + |E_{
m coh}|}$$

Thank you for listening!

