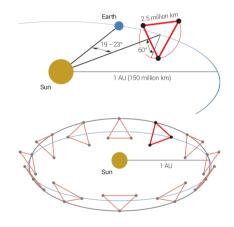
The Doppler boosted LISA response to GWs

Tom van der Steen

Belgian-Dutch GW Meeting 2025

28 October 2025



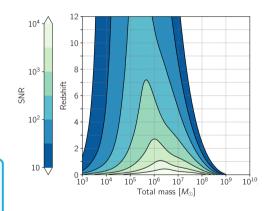
Based on arXiv:2509.10038
Tom van der Steen, Henri Inchauspé,
Thomas Hertog, Aurélien Hees

The LISA instrument

- Next-gen detector in the mHz band
- Constellation of three orbiting spacecraft
- Trailing/leading earth \Rightarrow 1 year orbit
- S/C velocities $\beta = v/c \sim 10^{-4}$

For the response, the S/C are treated as static during the light travel times.

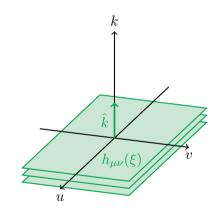
[LISA: 1702.00786]


Massive Black Hole Binaries

- · Loudest sources in the LISA band
- Total SNRs up to thousands

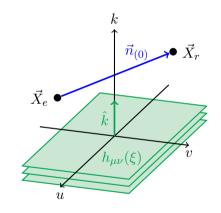
Requires leap in modeling:

- Accurate waveform models
- Accurate instrument simulation


Do we need to include velocity-corrections $\beta \sim 10^{-4}$ in the LISA response to GWs?

[LISA Redbook: 2402.07571]

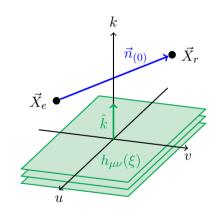
GW response (stationary spacecraft)


- GW on Minkowski background: $\eta_{\mu\nu} + h_{\mu\nu}(\xi)$
- Plane waves in \hat{k} -direction: $\xi = ct \hat{k} \cdot \vec{x}$

[Cornish+2003, Finn2009, ...]

GW response (stationary spacecraft)

- GW on Minkowski background: $\eta_{\mu\nu} + h_{\mu\nu}(\xi)$
- Plane waves in \hat{k} -direction: $\xi = ct \hat{k} \cdot \vec{x}$
- ullet Send laser from test mass $ec{X}_e$ to $ec{X}_r$

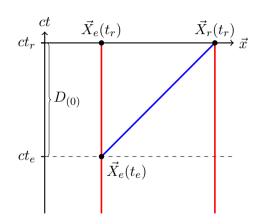


[Cornish+2003, Finn2009, ...]

GW response (stationary spacecraft)

- GW on Minkowski background: $\eta_{\mu\nu} + h_{\mu\nu}(\xi)$
- Plane waves in \hat{k} -direction: $\xi = ct \hat{k} \cdot \vec{x}$
- Send laser from test mass $\vec{X_e}$ to $\vec{X_r}$
- GW imparts time delay (or contraction) δt
- Frequency shifts $y = (\nu_e \nu_r)/\nu_e$

$$y_{\text{GW}} = \frac{1}{2} \frac{\hat{n}_{(0)}^{l} \hat{n}_{(0)}^{m}}{1 - \hat{k} \cdot \hat{n}_{(0)}} \left(h_{lm}(\xi_r) - h_{lm}(\xi_e) \right)$$

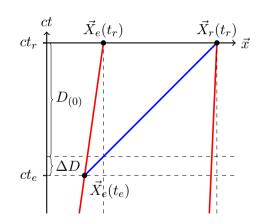


[Cornish+2003, Finn2009, ...]

Adding velocity β in the mix

$\mathcal{O}(1)$: Background, Stationary S/C

• Instantaneous separation $D_{(0)}$


Adding velocity β in the mix

 $\mathcal{O}(1)$: Background, Stationary S/C

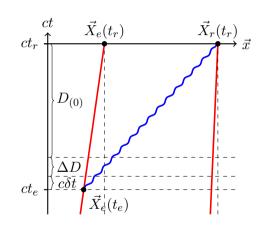
• Instantaneous separation $D_{(0)}$

 $\mathcal{O}(\beta)$: Background, Moving S/C

- Displacement $\Delta D \propto \beta_e$
- Adjusted line-of-sight
- Doppler shift

Adding velocity β in the mix

 $\mathcal{O}(1)$: Background, Stationary S/C


• Instantaneous separation $D_{(0)}$

 $\mathcal{O}(\beta)$: Background, Moving S/C

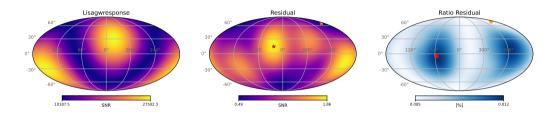
- Displacement $\Delta D \propto \beta_e$
- Adjusted line-of-sight
- Doppler shift

 $\mathcal{O}(h\beta)$: Background+GW, Moving S/C

- Small shift $c\delta t \propto h\beta$
- New line-of-sight again
- Doppler shift + GW response

Derivation modified response

- Determine laser's null geodesic $\sigma^{\mu}(\lambda)$
- Boundaries set by $\vec{X}_r(t_r)$ (fixed) and $\vec{X}_e(t_e)$ (perturbative)
- Determine observed frequencies ν_r and ν_e

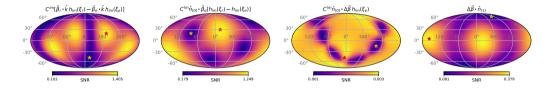

$$\dot{\sigma}(\lambda) = \underbrace{\hat{n}_{(0)}}_{\text{straight line}} + \underbrace{\hat{n}_{(1)}}_{\text{occumulated GW}} + \underbrace{\dots \ h_{lm}(\xi(\lambda))}_{\text{local GW}}$$

[2509.10038]

Doppler corrections to the response

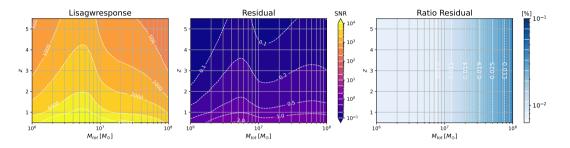
$$y_{\mathrm{GW}} = -\underbrace{\frac{1}{2} \frac{\hat{n}_{(0)}^{l} \hat{n}_{(0)}^{m}}{1 - \hat{k} \cdot \hat{n}_{(0)}} [h_{lm}(\xi_r) - h_{lm}(\xi_e)]}_{\text{Standard response}} + \underbrace{\frac{1}{2} \frac{\hat{n}_{(0)}^{l} \hat{n}_{(0)}^{m}}{1 - \hat{k} \cdot \hat{n}_{(0)}} [\vec{\beta}_r \cdot \hat{k} \; h_{lm}(\xi_r) - \vec{\beta}_e \cdot \hat{k} \; h_{lm}(\xi_e)]}_{\text{localized redshift}} \\ - \underbrace{\frac{1}{2} \frac{\hat{n}_{(0)}^{l} \hat{n}_{(0)}^{m}}{1 - \hat{k} \cdot \hat{n}_{(0)}} \hat{n}_{(0)} \cdot \vec{\beta}_e [h_{lm}(\xi_r) - h_{lm}(\xi_e)]}_{\text{point-ahead correction}} - \underbrace{\frac{1}{2} \frac{\hat{n}_{(0)}^{l} \hat{n}_{(0)}^{m}}{1 - \hat{k} \cdot \hat{n}_{(0)}} \hat{n}_{(0)} \cdot (\vec{\beta}_r - \vec{\beta}_e) h_{lm}(\xi_e)}_{\text{point-ahead correction}} \\ - \underbrace{\eta_{ij}(\beta_r^i - \beta_e^i) \hat{n}_{(1)}^j}_{\text{modified Doppler shift}} + \mathcal{O}(\beta^2 h).$$

Impact on total SNR (sky dependence)



Skymap for
$$M_{\rm tot}=5 imes 10^6 \, {\rm M_{\odot}}$$
 at $z=1$, with $q=1$, $\chi_1=\chi_2=0.7$

- Maximum residual SNR ~ 2
- Differences up to 0.01%
- Note this source is very loud


7 of 10

Sky-dependence individual terms

Skymap for $M_{\mathrm{tot}} = 5 \times 10^6 \, \mathrm{M_{\odot}}$ at z = 1, with q = 1, $\chi_1 = \chi_2 = 0.7$

Impact on total SNR (mass dependence)

- Differences up to 0.04%
- Increase in difference for high mass systems
- High mass sources spend short time in the LISA band

Conclusions

- Residuals up to SNR ~ 2 and differences of $\sim 0.04\%$
- Same accuracy as the state-of-the-art NR simulations
- Not likely to impact intrinsic parameter estimation
- Relevant for high mass sky-localization? (break degeneracy)

Prospects

- Full Bayesian analysis is difficult
- Simulate with modified response, analyze with existing tools
- Fischer Analysis (JAX version of lisagwresponse)