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Preview

From	the	broad	perspecFve	of	“symmetry”,	I	will	examine	how	
gravity	(=	General	Rela)vity,	Einstein’s	theory	of	dynamical	
spaceFme)	differs	from	the	other	fundamental	interacFons,	why	this	
poses	difficulFes	in	construcFng	a	(nonperturbaFve)	quantum	theory	
of	gravity,	and	how	we	have	been	learning	to	deal	with	them.		
		
My	talk	today	will	be	about	
!•	standard	classical	formulaFon	of	gravity:	analogies	and	differences	
with	local	gauge	field	theories	

!•	diffeomorphism	invariance,	background-independence	and	
observables	

!•	(Causal)	Dynamical	TriangulaFons	as	“exact”,	nonperturbaFve	
laZce	implementaFon	of	these	concepts



Modelling	space5me:	back	to	the	roots	…
“Über	die	Hypothesen,	welche	der	Geometrie	zu	
Grunde	liegen”	(B.	Riemann,	GöZngen,	1854):	
!•		laying	the	foundaFons	of	Riemannian	geometry:							
n-dimensional	manifolds	with	a	metric	structure,	
characterized	by	the	infinitesimal	line	element			
!																													ds2	=	gμν(x)dxμdxν						

•		guided	by	“experience”,	physical	(Newtonian)	consideraFons		
!•		“my	consideraFons	may	not	apply	in	the	immeasurably	small”	—	

may	have	to	revisit	them	in	the	light	of	new	physical	observaFons	
!•		contemplates	“discrete	manifolds”	(as	opposed	to	conFnuous	

ones)	—	counFng	is	more	intuiFve	than	measuring		
!•		foreshadows	the	spectacular	success	of	(pseudo-)Riemannian	

differenFable	manifolds	in	GR	(and	our	love	affair	with	coordinates)



•	In	classical	GR,	smooth	manifolds	
(M,gμν)	with	Lorentzian	metrics	gμν(x)		
of	signature	(−+++)	provide	convenient,	
powerful	models	of	spacetime.						
Using	local	coordinate	charts	U,	we	can	
compute	just	like	on	R4.	
!•	Geometric	properFes	are	encoded	in	

the	Riemann	curvature	tensor	Rκλμν(x).
differenFable	manifold	M	and	a	coordinate	chart	

•		tensors	transform	according	to	the	rules	of	tensor	calculus;	e.g.	
the	metric	transforms	nontrivially	under	x	↦	y(x):			
!
!
!
•		coordinates	are	arbitrary;	for	a	given	metric	(e.g.	with	isometries),	
can	use	this	“freedom	of	choice”	to	obtain	a	simple	funcFonal	form

SeFng	the	stage	for	General	Rela5vity	(GR)

ds2 =gµ�(x)dxµdx� = gµ�(x(y))
�xµ(y)

�y�
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!•		classically,	we	do	not	care	much	about	the	redundancy																
			•		however,	to	interpret	the	dynamics	correctly,	we	must	disFnguish	
between	physics	(=	poten5ally	observable)	and	gauge	(=	mere	
“coordinate	effects”)	
!•		infamous	“pihalls”	from	the	early	days	of	GR:	
!‣		long-standing	confusion	about	the	physical	status	of	r	=	2GM	
(aka	the	event	horizon)	in	the	Schwarzschild	soluFon	
‣		are	gravitaFonal	waves	real?	(Einstein	and	Rosen,	1936)	

!

Physics	vs.	gauge
gµ� � g̃µ�
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!Einstein	to	J.	Tate	(editor	Physical	Review),	27	Jul	1936:	
!“Dear Sir, we(Mr.Rosen and I) had sent you our manuscript 
for publication and had not authorized you to show it to 
specialists before it is printed. I see no reason to 
address the — in any case erroneous — comments of your 
anonymous expert. On the basis of this incident I prefer 
to publish the paper elsewhere. Respectfully, A.Einstein”

Physics	vs.	gauge
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Diffeomorphism	invariance
	diffeomorphism	𝜑

M
q

p=φ(q)
φ•		(global)	diffeomorphism	is	a	C∞-map		

𝜑:	M	→	M	with	inverse	𝜑-1																	
			•		“structure-preserving”	maps	of	
differenFable	manifolds		
•		form	∞-dimensional	group	Diff(M)	under	composiFon		
•		in	local	coordinate	charts,	tensor	components	transform	as	usual	
•		denote	equaFons	of	moFon	F[	Φ,	Σ	]	=	0,	where	Φ	are	dynamical	
fields,	Σ	is	nondynamical	(background)	structure	
!•			a	diffeomorphism-invariant	theory	saFsfies	
						F[	Φ,	Σ	]	=	0			⇔			F[	𝜑	•	Φ,	Σ	]	=	0,	for	all	𝜑	
•		true	for	Einstein	equaFons:	𝜑	maps	soluFons	to	soluFons,	no	Σ	
!•		gravity	is	background-independent:	since	metric	“gets	moved	along”	

with	𝜑,	“the	point	x”	is	not	a	physically	meaningful	concept	



•		the	dynamics	of	GR	takes	place	on	the	
space	of	geometries	G(M),	where																						
						[gμν(x)]	∈	G(M)	:=	Lor(M)/Diff(M)		
!•		analogue	of	nonabelian	gauge	field	theory			

						[Aμa(x)]	∈	Asu(N)(M)/G(SU(N))																								.

Gravity	vs.	gauge	field	theory

“the	point	x”	is	an		
unphysical	concept

M
x

�

M
d4x

�
g R(x)

diffeomorphism		
orbit	[gμν]

Lor(M)

•		in	both	cases,	physics	is	invariant	along	gauge	orbits		
•		however,	G(SU(N))	acts	pointwise	at	x	in	internal	space,	and	there	
is	a	fixed	background	structure,	the	Minkowski	metric	ημν	

•		observables	in	Yang-Mills	theory	are	
local	scalars,	like	FμνFμν,	but	because	of	
background	independence,	observables	
in	gravity	are	nonlocal	integrals	of	scalars,	like



Challenges	of	quantum	gravity
•		because	gravity	is	not	perturbaFvely	renormalizable,	we	must	
construct	a	quantum	theory	nonperturba)vely	
!•		diffeomorphisms	must	be	represented	in	the	quantum	theory,	and	

the	associated	redundancy	must	be	removed	somehow,	otherwise	
the	gravitaFonal	path	integral	has	infiniFes	
!•		the	physical	configuraFon	space	G(M)	is	not	linear	or	“nice”;	how	

can	we	parametrize	it	(e.g.	by	gauge-fixing)	in	the	full	theory?	
!•		how	can	we	regularize	and	renormalize	without	breaking	

diffeomorphism-invariance?			
		•		once	we	have	addressed	these	issues,	we	must	sFll	construct	
nonlocal	quantum	observables	and	understand	the	dynamics	and	
properFes	of	quantum	space6me	in	terms	of	them		
!•		somewhat	miraculously,	CDT	quantum	gravity	provides	a	blueprint	

for	handling	diffeomorphism	invariance	and	quantum	observables



Challenges	of	quantum	gravity
•		because	gravity	is	not	perturbaFvely	renormalizable,	we	must	
construct	a	quantum	theory	nonperturba)vely	
!•		diffeomorphisms	must	be	represented	in	the	quantum	theory,	and	

the	associated	redundancy	must	be	removed	somehow,	otherwise	
the	gravitaFonal	path	integral	has	infiniFes	
!•		the	physical	configuraFon	space	G(M)	is	not	linear	or	“nice”;	how	

can	we	parametrize	it	(e.g.	by	gauge-fixing)	in	the	full	theory?	
!•		how	can	we	regularize	and	renormalize	without	breaking	

diffeomorphism-invariance?			
		•		once	we	have	addressed	these	issues,	we	must	sFll	construct	
nonlocal	quantum	observables	and	understand	the	dynamics	and	
properFes	of	quantum	space6me	in	terms	of	them		
!•		somewhat	miraculously,	CDT	quantum	gravity	provides	a	blueprint	

for	handling	diffeomorphism	invariance	and	quantum	observables



• 	laZce	gauge	theory	has	been	immensely	successful	in	helping	us	
understand	and	quanFfy	the	nonperturbaFve	regime	of	QCD			
!• 	general	philosophy:	laZce	acts	as	regulator,	with	UV	cutoff	a;	
search	for	a	conFnuum	limit	by	approaching	a	second-order	phase	
transiFon	in	the	limit	a	—>	0	while	renormalizing	bare	couplings	
appropriately;	arain	“universality”	(independence	of	regularizaFon	
details)	

Taking	a	cue	from	laFce	gauge	field	theory

• the	fundamental	laZce	variables	are	
edge	holonomies	U(ℓ)=P	exp	∫ℓ	A	
!• they	sFll	transform	under	SU(N)	at	
their	end	points,	lying	at	the	verFces		
!• key:	the	gauge	transformaFons	are	
“exact”,	sFll	form	a	group,	despite	the	
regularizaFon

U(ℓ1)

U(ℓ2)

a	cubic	laZce	represenFng	flat	spaceFme,		
with	gauge	fields	living	on	edges	and	verFces



!Strategy:	approximate	curved	spaceFmes	by	simplicial	manifolds,	
following	the	profound,	but	underappreciated	idea	of															
“General	RelaFvity	without	Coordinates”	(Regge,	1961).		
!•		‘piecewise	flat’	gluings	of	4D	triangular	building	blocks														
(four-simplices)	describe	intrinsically	curved	spaceFmes	
!•		Geometry	is	specified	uniquely	by	the	edge	lengths	ℓ	of	the	sim-

plices	and	how	they	are	‘glued’	together.	No	coordinates	are	needed.	
One	is	working	directly	on	(a	regularized	version	of)	G(M).	
		•		The	full	power	of	this	idea	is	unleashed	in	the	quantum	theory,	
using	a	(C)DT	path	integral	over	dynamical,	equilateral	“laZces”							
(ℓ	=	a	up	to	global	Fme	vs.	space	scaling,	for	a	UV	cut-off	a).		
!•		The	nonperturbaFve	gravitaFonal	path	integral	has	no	coordinate	
redundancies.	The	MC	simulaFons	are	relabeling	invariant.

ℓs

ℓs

ℓt

PuFng	quantum	gravity	on	a	laFce,	correctly



Next,	let	the	fun	begin	(but	not	today	…)	
The	philosophy	of	defining	the	nonperturbaFve	
theory	as	the	conFnuum	limit	of	a	(dynamical)	
laZce	theory	can	be	implemented	in	gravity!		
!Complete,	analyFcally	solved	toy	models	of	
quantum	gravity	in	2D	(where	there	are	
conFnuum	theories	to	compare!).triangulated	model	of	quantum	space

Real	progress	in	construcFng	nonperturbaFve	quantum	gravity	in	4D		
(with	no	conFnuum	theory	to	compare).	Nonlocal	quantum	observables	
(various	“dimensions”,	spaFal	volume,	volume	correlators,	quantum		
Ricci	curvature)	have	been	constructed	and	measured.	

CDT	reviews:	J.	Ambjørn,	A.	Görlich,	J.	Jurkiewicz	&	RL,	Physics	Reports	519	(2012)	127,	
arXiv:	1203.3591;	RL,	Classical	and	Quantum	Gravity	37	(2020)	013002,	arXiv:1905.08669
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