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Preview

From the broad perspective of “symmetry”, | will examine how
gravity (= General Relativity, Einstein’s theory of dynamical
spacetime) differs from the other fundamental interactions, why this
poses difficulties in constructing a (nonperturbative) quantum theory
of gravity, and how we have been learning to deal with them.

My talk today will be about

e standard classical formulation of gravity: analogies and differences
with local gauge field theories

e diffeomorphism invariance, background-independence and
observables

e (Causal) Dynamical Triangulations as “exact”, nonperturbative
lattice implementation of these concepts



Modelling spacetime: back to the roots ...

“Uber die Hypothesen, welche der Geometrie zu
Grunde liegen” (B. Riemann, Gottingen, 1854):

e |aying the foundations of Riemannian geometry:
n-dimensional manifolds with a metric structure,
characterized by the infinitesimal line element

ds? = gu(x)dx*dx"

e guided by “experience”, physical (Newtonian) considerations

e “my considerations may not apply in the immeasurably small” —
may have to revisit them in the light of new physical observations

e contemplates “discrete manifolds” (as opposed to continuous
ones) — counting is more intuitive than measuring

e foreshadows the spectacular success of (pseudo-)Riemannian
differentiable manifolds in GR (and our love affair with coordinates)



Setting the stage for General Relativity (GR)

e |n classical GR, smooth manifolds
(M,q,) with Lorentzian metrics g,.(x)
of signature (—+++) provide convenient,
powerful models of spacetime.

Using local coordinate charts U, we can
compute just like on R?.

M
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e Geometric properties are encoded in
the Riemann curvature tensor R“y.v(x).

differentiable manifold M and a coordinate chart

e tensors transform according to the rules of tensor calculus; e.g.
the metric transforms nontrivially under x — y(x):

ozt (y) Ox” . i
dsRGl D ) dr dr” =g, (y) ay(py) 8ygfy) dy’dy’ =: gpo(y)dy”dy

e coordinates are arbitrary; for a given metric (e.g. with isometries),
can use this “freedom of choice” to obtain a simple functional form



Physics vs. gauge

e classically, we do not care much about the redundancy g, ~ 9.

e however, to interpret the dynamics correctly, we must distinguish
between physics (= potentially observable) and gauge (= mere
“coordinate effects”)

e infamous “pitfalls” from the early days of GR:

» long-standing confusion about the physical status of r = 2GM
(aka the event horizon) in the Schwarzschild solution
» are gravitational waves real? (Einstein and Rosen, 1936)
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Einstein to J. Tate (editor Physical Review), 27 Jul 1936:

“Dear Sir, we (Mr.Rosen and I) had sent you our manuscript
for publication and had not authorized you to show it to
specialists before it is printed. I see no reason to
address the — in any case erroneous — comments of your
anonymous expert. On the basis of this incident I prefer
to publish the paper elsewhere. Respectfully, A.Einstein”




Diffeomorphism invariance

diffeomorphism ¢

e (global) diffeomorphism is a C-map
@: M = M with inverse ¢

e “structure-preserving” maps of
differentiable manifolds

e form co-dimensional group Diff(M) under composition

e in local coordinate charts, tensor components transform as usual
e denote equations of motion F[ @, 2 | = 0, where @ are dynamical

fields, 2 is nondynamical (background) structure

e a diffeomorphism-invariant theory satisfies
F[D,2]=0 & Flo -0, 2]=0, forall g

e true for Einstein equations: ¢ maps solutions to solutions, no 2

4

® gravity is background-independent: since metric “gets moved along’
with ¢, “the point x” is not a physically meaningful concept



Gravity vs. gauge field theory

e the dynamics of GR takes place on the
space of geometries G(M), where

[gu(x)] € G(M) := Lor(M)/Diff(M)
diffeomorphis LofM) e analogue of nonabelian gauge field theory
. [Au(x)] € B=M(M)/G(SU(N))

e in both cases, physics is invariant along gauge orbits

e however, G(SU(N)) acts pointwise at x in internal space, and there
is a fixed background structure, the Minkowski metric n,,

“the point x” is an
unphysical concept

® observables in Yang-Mills theory are
local scalars, like F*F,,, but because of
background independence, observables
in gravity are nonlocal integrals of scalars, like /M d zvg B

M




Challenges of quantum gravity

® because gravity is not perturbatively renormalizable, we must
construct a quantum theory nonperturbatively

e diffeomorphisms must be represented in the quantum theory, and
the associated redundancy must be removed somehow, otherwise
the gravitational path integral has infinities

e the physical configuration space G(M) is not linear or “nice”; how
can we parametrize it (e.g. by gauge-fixing) in the full theory?

e how can we regularize and renormalize without breaking
diffeomorphism-invariance?

e once we have addressed these issues, we must still construct
nonlocal guantum observables and understand the dynamics and
properties of qguantum spacetime in terms of them

e somewhat miraculously, CDT quantum gravity provides a blueprint
for handling diffeomorphism invariance and quantum observables
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Taking a cue from lattice gauge field theory

e |attice gauge theory has been immensely successful in helping us
understand and quantify the nonperturbative regime of QCD

e general philosophy: lattice acts as regulator, with UV cutoff a;
search for a continuum limit by approaching a second-order phase
transition in the limit a —> 0 while renormalizing bare couplings
appropriately; attain “universality” (independence of regularization

details)
e the fundamental lattice variables are

UWD edge holonomies U(¥f)=P exp [, A
e they still transform under SU(N) at
their end points, lying at the vertices

U(?,)

e key: the gauge transformations are
“exact”, still form a group, despite the

a cubic lattice representing flat spacetime, regU|a rization

with gauge fields living on edges and vertices



Putting quantum gravity on a lattice, correctly

Strategy: approximate curved spacetimes by simplicial manifolds,

following the profound, but underappreciated idea of e
“General Relativity without Coordinates” (Regge, 1961). 7
o ‘piecewise flat’ gluings of 4D triangular building blocks
(four-simplices) describe intrinsically curved spacetimes 2

e Geometry is specified uniguely by the edge lengths € of the sim-
plices and how they are ‘glued’ together. No coordinates are needed.
One is working directly on (a regularized version of) G(M).

e The full power of this idea is unleashed in the guantum theory,
using a (C)DT path integral over dynamical, equilateral “lattices”
(€ = a up to global time vs. space scaling, for a UV cut-off a).

e The nonperturbative gravitational path integral has no coordinate
redundancies. The MC simulations are relabeling invariant.



Next, let the fun begin (but not today ...)

The philosophy of defining the nonperturbative
theory as the continuum limit of a (dynamical)
lattice theory can be implemented in gravity!

Complete, analytically solved toy models of
qguantum gravity in 2D (where there are
continuum theories to comparel!).

triangulated model of quantum space

Real progress in constructing nonperturbative quantum gravity in 4D
(with no continuum theory to compare). Nonlocal quantum observables
(various “dimensions”, spatial volume, volume correlators, quantum
Ricci curvature) have been constructed and measured.

CDT reviews: J. Ambjgrn, A. Gorlich, J. Jurkiewicz & RL, Physics Reports 519 (2012) 127,
arXiv: 1203.3591; RL, Classical and Quantum Gravity 37 (2020) 013002, arXiv:1905.08669
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