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Metric vs geometry
I GR: gravitational degrees of freedom encoded in the

(Riemannian/Lorentzian) metric gµν(x) on spacetime
manifold

I Metrics related by diffeomorphism describe the same
geometry

gµ′ν′(x ′) =
∂xµ

∂xµ′

∂xν

∂xν′ gµν(x)

I Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics gµν} /Diff =

{ }
I In general, a very complicated non-linear ∞-dim

mathematical space, but understanding restricted
versions is important in many applications.



Metric vs geometry
I GR: gravitational degrees of freedom encoded in the

(Riemannian/Lorentzian) metric gµν(x) on spacetime
manifold

I Metrics related by diffeomorphism describe the same
geometry

gµ′ν′(x ′) =
∂xµ

∂xµ′

∂xν

∂xν′ gµν(x)

I Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics gµν} /Diff =

{ }
I In general, a very complicated non-linear ∞-dim

mathematical space, but understanding restricted
versions is important in many applications.



Metric vs geometry
I GR: gravitational degrees of freedom encoded in the

(Riemannian/Lorentzian) metric gµν(x) on spacetime
manifold

I Metrics related by diffeomorphism describe the same
geometry

gµ′ν′(x ′) =
∂xµ

∂xµ′

∂xν

∂xν′ gµν(x)

I Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics gµν} /Diff =

{ }
I In general, a very complicated non-linear ∞-dim

mathematical space, but understanding restricted
versions is important in many applications.



diffeomorphism

Metric vs geometry
I GR: gravitational degrees of freedom encoded in the

(Riemannian/Lorentzian) metric gµν(x) on spacetime
manifold

I Metrics related by diffeomorphism describe the same
geometry

gµ′ν′(x ′) =
∂xµ

∂xµ′

∂xν

∂xν′ gµν(x)

I Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics gµν} /Diff =

{ }
I In general, a very complicated non-linear ∞-dim

mathematical space, but understanding restricted
versions is important in many applications.



diffeomorphism

Metric vs geometry
I GR: gravitational degrees of freedom encoded in the

(Riemannian/Lorentzian) metric gµν(x) on spacetime
manifold

I Metrics related by diffeomorphism describe the same
geometry

gµ′ν′(x ′) =
∂xµ

∂xµ′

∂xν

∂xν′ gµν(x)

I Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics gµν} /Diff =

{ }

I In general, a very complicated non-linear ∞-dim
mathematical space, but understanding restricted
versions is important in many applications.



diffeomorphism

Metric vs geometry
I GR: gravitational degrees of freedom encoded in the

(Riemannian/Lorentzian) metric gµν(x) on spacetime
manifold

I Metrics related by diffeomorphism describe the same
geometry

gµ′ν′(x ′) =
∂xµ

∂xµ′

∂xν

∂xν′ gµν(x)

I Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics gµν} /Diff =

{ }
I In general, a very complicated non-linear ∞-dim

mathematical space, but understanding restricted
versions is important in many applications.



Moduli spaces: why?
I Sometimes the moduli space is simple. . .

M =

{
stationary asymptotically flat

black hole solutions to GR

}

∼=
{(

M,
a

M

)
∈ (0,∞)× [0, 1]

}

I . . . or directly relevant to observations

M =

 asymptotically flat binary
black hole solutions to GR

(plus position/orientation detector)



−→

{ }

I and crucial to (path integral approaches to) quantum gravity

Z =

∫
D[gµν ]

Diff
e−S[gµν ]

=

∫
M

D[geom]e−S[geom]
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 requires a natural measure
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How to do gravity without coordinates? Combinatorics
I Look at moduli spaces relevant to 2D quantum gravity.

I Start with “discrete geometry”:

M�
n =

{
metrics on S2 that can be tiled

by n Euclidean unit squares

}
/Diff

∼= {planar maps with n quadrangles}

I This is a finite space, entirely determined by
combinatorial data.

I It is naturally equipped with counting measure

Z =

∫
M

D[geom]e−S[gµν ] −→ Z =
∑

m∈M�
n

e−S[m]

I But how to count? And how to determine statistical
properties of the random geometry determined by Z?
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The bijective approach

I There exists a bijection [Cori, Vauquelin] [Schaeffer, ’99]

M�
n

(n+2)-to-2←−−−−−→
{

rooted plane trees with labels ∈ N
that vary by at most 1

}

I Hence Zn =
∑
M�

n

1 =
2 3n

(
2n
n

)
(n + 2)(n + 1)

.

I Uniform measure on M�
n ⇐⇒ uniform plane tree + uniform labeling.
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Brownian motion
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Brownian motionContinuum random tree (CRT)
[Aldous, '92]
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The bijective approach: a detailed picture of the geometry
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Topology S2
Scale-invariant
Hausdorff dim. 4

[Le Gall, '11]
[Miermont, '11]

The bijective approach: a detailed picture of the geometry



Hyperbolic geometry

I Constant curvature: Ricci scalar R = −2 ⇐⇒ Gaussian curvature K = −1.

I Geometry is determined by Fenchel-Nielsen coordinates `1, τ1, `2, τ2, . . ., but pants
decomposition is far from unique.



Hyperbolic geometry

I Constant curvature: Ricci scalar R = −2 ⇐⇒ Gaussian curvature K = −1.

I Geometry is determined by Fenchel-Nielsen coordinates `1, τ1, `2, τ2, . . ., but pants
decomposition is far from unique.



Hyperbolic geometry

I Constant curvature: Ricci scalar R = −2 ⇐⇒ Gaussian curvature K = −1.

I Geometry is determined by Fenchel-Nielsen coordinates `1, τ1, `2, τ2, . . ., but pants
decomposition is far from unique.



Pair of pants decomposition

Hyperbolic geometry

I Constant curvature: Ricci scalar R = −2 ⇐⇒ Gaussian curvature K = −1.

I Geometry is determined by Fenchel-Nielsen coordinates `1, τ1, `2, τ2, . . ., but pants
decomposition is far from unique.



Pair of pants decomposition

LengthTwist

Hyperbolic geometry

I Constant curvature: Ricci scalar R = −2 ⇐⇒ Gaussian curvature K = −1.

I Geometry is determined by Fenchel-Nielsen coordinates `1, τ1, `2, τ2, . . ., but pants
decomposition is far from unique.



Moduli space of hyperbolic surfaces [Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, . . . ]

I Consider the Moduli space

Mhyp
g ,n(L) =

{
hyperbolic metrics on genus-g surface with n
geodesic boundaries of lengths L = (L1, . . . , Ln)

}
/Diff

I Carries natural Weil-Petersson measure dµWP. In Fenchel-Nielsen coordinates:

dµWP = 23−3g−n d`1dτ1 · · · d`3g−3+ndτ3g−3+n. [Wolpert, ’82]

I Weil-Petersson volume: Vg ,n(L) ≡ Z =
∫
Mhyp

g,n(L)
dµWP <∞.

I Characterized in [Mirzakhani,’05]: Vg ,n(L) satisfies a (topological) recursion formula. In
particular, Vg ,n(L) is polynomial in L2

1, . . . , L
2
n of degree 3g − 3 + n.
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I Weil-Petersson volume: Vg ,n(L) ≡ Z =
∫
Mhyp

g,n(L)
dµWP <∞.

I Characterized in [Mirzakhani,’05]: Vg ,n(L) satisfies a (topological) recursion formula. In
particular, Vg ,n(L) is polynomial in L2
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Bijective approach to hyperbolic surfaces?

I Where is the tree? Determine cut locus of a distinguished cusp.

I Mhyp
0,n (0)

bijection←−−−→
{

binary trees with angles (αi , βi ) ∈ (0, π)2n−6 : αi + βi > π, θ + σ > π
}

I dµWP is mapped to Euclidean measure 2n−3dα1dβ1 · · · dαn−3dβn−3.
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Extension to surfaces with geodesic boundaries

I How about Mhyp
0,n (L) with L 6= 0? Does it admit a tree bijection?

I Need to extend boundaries to ∞ and introduce extra coordinates.

I Now dµWP ↔ 2n−3dα1dβ1 · · · dαkdβkdt1dw1 · · · dtmdwt , and can reproduce V0,n(L).
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Alicia Castro

Bijection between hyperbolic surfaces and maps?

I A mysterious identity between WP volumes and certain maps: [TB, ’20]

Vol
(
Mhyp

g ,n(L)
)

= Vol

({
2π-irreducible metric maps on genus-g surface
with n faces of circumference αi =

√
Li + 4π2

})
for g = 0, 1.

I Is there a bijective interpretation? Would shed light on a matrix model interpretation of
JT gravity. [Saad, Shenker, Stanford, ’19]
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Conclusions

I Gravity without coordinates: need to rely on geometric constructions (geodesics,
distances, angles, . . . ) to explore moduli space.

I Bijective approach for maps: often can encode entire geometry in tree data structure,
which is much easier to study analytically.

I Extension to hyperbolic geometry procides purely geometric way of computing
Weil-Petersson volumes ←→ JT gravity path integrals.

Outlook

I Tree bijections open the way to detailed geodesic distance statistics.

I Prospects for 3D gravity?

M2+1
g ,n =

{
solutions to 2+1D GR on Σg × R

coupled to n point particles

}
≈ TMhyp

g ,n


