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> GR: gravi’FationaI deg.rees of frgedom encoded in the diffeomorphism
(Riemannian/Lorentzian) metric g,,,,(x) on spacetime N —
manifold L

» Metrics related by diffeomorphism describe the same
geometry
Oxt Ox¥
gM'V/(X/) = nguy(x)
» Choice of coordinates is gauge freedom, physics takes
place on a Moduli space

M = {Metrics g,,,} / Diff = {ﬂfk}

» In general, a very complicated non-linear co-dim
mathematical space, but understanding restricted
versions is important in many applications.
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Moduli spaces: why? R

—
» Sometimes the moduli space is simple. . . g

|—> Angular momentum
_ | stationary asymptotically flat | ., {( 7)
M= { black hole solutions to GR - At»M € (0,00) x [0, 1]

Mass

» . .or directly relevant to observations

asymptotically flat binary 0
M= black hole solutions to GR — {\/\/V\/\/\J%}
(plus position/orientation detector) i
» and crucial to (path integral approaches to) quantum gravity
5 ,@
/ [g ] —S[g“,,] _ / D[geom]e S[geom]
m M > M requires a natural measure

don't want to integrate over gauge
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How to do gravity without coordinates? Combinatorics

| C R?

» Look at moduli spaces relevant to 2D quantum gravity.
» Start with “discrete geometry”:
0 _ | metrics on S2 that can be tiled .
My = { by n Euclidean unit squares /Diff

= {planar maps with n quadrangles}

» This is a finite space, entirely determined by (planar) map
combinatorial data. M5 = {D bhkhlkak l@@@}

» It is naturally equipped with counting measure

Z:/ D[geom]e °l&l 7= Z e~ Sm]
M memMy

» But how to count? And how to determine statistical
properties of the random geometry determined by Z7
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The bijective approach
» There exists a bijection [Cori, Vauquelin] [Schaeffer, '99]

MO (n+2)-to-2 rooted plane trees with labels € N
n that vary by at most 1

Labelings
g2 37(>) Catalan numbers
>HenceZ,,:Zl:—” :
= (n+2)(n+1)
M= Vertices
» Uniform measure on M,,D <= uniform plane tree + uniform labeling.
2
42 3
r+1 r+1
T - 32 1
r
2
r+i®7.“+l 1
r

Recipe



The bijective approach: a detailed picture of the geometry

3 2



The bijective approach: a detailed picture of the geometry




The bijective approach: a detailed picture of the geometry

2 4 6 8 10 12 2”



The bijective approach: a detailed picture of the geometry

Brownian motion 2



The bijective approach: a detailed picture of the geometry

1
n
n — o0
N
D
Continuum random tree (CRT) Brownian motion 2

[Aldous, '92]



The bijective approach: a detailed picture of the geometry

2 4 6 8 10 12 2”

1
Brownian n
labelling n — 0o
Brownian sphere Continuum random tree (CRT) Brownian motion 2

[Marckert, Mokkadem, '06] [Aldous, '92]



The bijective approach: a detailed picture of the geometry

2 4 6 8 10 12 2”

1/4
d(-,-)/n* [Le Gall, 1] Brownian %
1 — OO [Miermont, '11] labelling n — 0o
TopologyS2 |
Scale-invariant
Hausdorff dim. 4 |
. gluing
Brownian sphere Continuum random tree (CRT) Brownian motion 2

[Marckert, Mokkadem, '06] [Aldous, '92]
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Hyperbolic geometry

» Constant curvature: Ricci scalar R = -2 <= Gaussian curvature K = —1.

» Geometry is determined by Fenchel-Nielsen coordinates ¢1, 71, 2, 72, ..., but pants
decomposition is far from unique.

Twist Length H ds? — dz? +dy?
= 92

Yab Pair of pants decomposition /
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MOCIU'I Space Of hypel’bOhC Su rfaCGS [Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...

» Consider the Moduli space

hyperbolic metrics on genus-g surface with n .
hyp yP g -4
Mgin(L) = { geodesic boundaries of lengths L = (Ly,...,L,) }/lef

» Carries natural Weil-Petersson measure duwep. In Fenchel-Nielsen coordinates:
duwp = 2373gin dfidry - - dé3g—3+nd7'3g—3+n~ [Wolpert, '82]

> Weil-Petersson volume: V, (L) =Z = thyp(L dpwp < oo.

» Characterized in [Mirzakhani, 05]: Vg (L) satlsfles a (topological) recursion formula.
particular, V, (L) is polynomial in L3,..., L2 of degree 3g —3 + n.

]

hyp @ M?yzp : / i i
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Bijective approach to hyperbolic surfaces?

» Where is the tree? Determine cut locus of a distinguished cusp.
bijection

MgP®(0) <=5 {binary trees with angles (a;, 3;) € (0,7)*" % o + B; > 7, 0+ 0 > 7}
» duwp is mapped to Euclidean measure 2"3dondfs - - - day_3dBa_3.

0o
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] 5 ‘ . i [} g
n=20 ~ n = 10000 *7

Hyperbolic surfaces with n cusps
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Extension to surfaces with geodesic boundaries

» How about Mhyp(L) with L # 07 Does it admit a tree bijection? Thomas Meeusen  Bart Zonneveld

(master)

» Need to extend boundaries to co and introduce extra coordinates.
» Now duwp ¢ 2" 3da1df; - - - dakdBkdtidwy - - - dtmdwy, and can reproduce Vo o(L).

Yiti=2wi=4

ti, W; >0:
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Bijection between hyperbolic surfaces and maps?

» A mysterious identity between WP volumes and certain maps: [TB, '20]
Alicia Castro

27-irreducible metric maps on genus-g surface
hyp = =
Vol (Mg*"(l')) Vol <{ with n faces of circumference a; = v/L; + 472 forg=0,1

L &=

0 = g=1
4 = n=3

» [s there a bijective interpretation? Would shed light on a matrix model interpretation of
JT gravity. [Saad, Shenker, Stanford, '19]



Higher genus and beyond constant curvature?
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» Mirzakhani's topological recursion admits a generalization to surfaces with defects if
boundaries are taken tight. [TB, Zonneveld, '22+]
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Higher genus and beyond constant curvature?

» Mirzakhani's topological recursion admits a generalization to surfaces with defects if
boundaries are taken tight. [TB, Zonneveld, '22+]

Bart Zonneveld

» Does it admit a bijective interpretation?

tight pair of pants kernel is the only part that changes

26LlL1 / dr/ dy:r:yKOx+y,L1)+...



Conclusions

» Gravity without coordinates: need to rely on geometric constructions (geodesics,
distances, angles, ...) to explore moduli space.

» Bijective approach for maps: often can encode entire geometry in tree data structure,
which is much easier to study analytically.

» Extension to hyperbolic geometry procides purely geometric way of computing
Weil-Petersson volumes <— JT gravity path integrals.

Outlook

» Tree bijections open the way to detailed geodesic distance statistics.

» Prospects for 3D gravity?

241 J solutions to 2+1D GRon >, x R | _ hyp
Mein = { coupled to n point particles ~ TMgh



