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disclaimer

* This is not all we do:

- Great paper by Jochem Kip and Zhongyi on “Neutrino signals from
DM” and Neutrino-DM interplay = next seminar?

—>Work in ATLAS on 4-top and triggering...



Scientific discovery: The 5th paradigm ?

* First paradigm : Empiric / Observation
« 2d paradigm : Theoretical Models (analytically solvable?)
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Scientific discovery: The 5th paradigm ?

* First paradigm : Empiric / Observation
« 2d paradigm : Theoretical Models (analytically solvable?)
« 3rd paradigm (1970s): Simulation / Numerical computation

« 2018 The Fourth Paradigm: Data-Intensive Scientific
Discovery (Jim Gray), Data and Machine Learning - but also
hype

* https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery

* June 2022: Al4Science to empower the fifth paradigm of scientific
discovery (Christopher Bishop, QFT thesis), Al trained on scientific
simulators (machine learning, quantum physics, computational
chemistry, molecular biology, fluid dynamics, software engineering, and
other disciplines)

* https://www.microsoft.com/en-us/research/blog/ai4science-to-empower-the-fifth-paradigm-of-scientific-discovery/



https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/

Some of examples of our work in 2021-2022






Most events look like this...

‘\‘

ATLAS

EXPERIMENT

Run Number: 266904, Event Number: 25884352

Date: 2015-06-03 13:41:54 CEST

Event from LHC run-Z




1 1n >1000 billion events looks
like this

Higgs to 2 photon candidate with mass of 125 GeV
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Traditional approach Model driven

. Pick a model of new physics

. Simplify

. Pick a likely (?) set of parameters
. Make a prediction = p_BSM(x)

. Train classifier (p_BSM(x) vs p_SM(x)) to
test the prediction

. Hypothesis test with data|old model vs
data|new model on classifier output

. Exclude the model parameter point ?
. Goto3orl




|Idea: Extend model-by-model supervised search for new physics
What can we change / improve ?

Found 3 more directions (are there more?):

- Look systematically in all data for new physics (brute force) -> 2018 Jeroen
in ATLAS

—2>Hyper-class augmentation: Train a ML classifier on many simulated models
of new physics = 2022 Zhongy, Roberto

- Anomaly detection: Train ML classifier only on known physics -> 5 pheno
since 2019, work in ATLAS with Polina and Clara




Search via “Hyperclass: Mixture of theories”

Assume the model/parameter set is not the correct one, but includes
some knowledge about the new phenomenon we expect in the data..

Maybe we should mix the knowledge of the theory community.
b ; . |
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https://home.gwu.edu/~kargaltsev/HEA/washington-conferences.html



Our approach Model driven

Pick many “model of new physics”

Pick many likely (?) sets of parameters!

Make many predictions

Mix them ) |

Train a classifier (NN, BDT) on va W;Ps,i(T) vs p_SM(x)
Hypothesis test in signal region datalSM

A i
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Tested on Channel 1 of Hackathon Dataset

Mixture of Theories, Random Series 1
Mixture of Theories, Random Series 2
Mixture of Theories, Random Series 3
Mixture of Theories, Random Series 4
== Mixture of Theories, Random Series 5
=& Train on neut2neut2_neut2_712

=~ Train on glsql366

—— Train on neut2neut2_neut2_510

—#— Train on glgl1741

—— Train on glgl2088

- Train on chachalep_cha751

= Train on stop365
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Tested on Channel 3 of Hackathon Dataset
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] ~e— Train on gmsb_glgl3601
—de— Train on neut2neut2_neut2_712
! —— Train on glsq1366
—&— Train on chaneutlep_cha900

= Train on sllp_sI583
=~ Train on snulp_snu656
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o

Mixture theories outperforms
“on average”
compared to single theory training

— See later for comparison with
other approaches

With Zhongyi Zhang, Roberto di Austri






Anomaly detection

1. Pick no “new physics model”
2. Learn the background model

3. Train ML classifier to test the
prediction (is event background or
not?)

4. Hypothesis test with
data|background model on classifier
output

5. Exclude the background model?



In which variable should you search?
Need a variable to "flag" an outlier




s the data in the simulation ?

e Autoencoder:
data =2 Simulation®-1 =2 code = Simulation - data’

—|s data = data’ or distance in latent space from target
—1s this a good question ?

—1s this the best approach ?

—>Comparison



Comparisons of approaches

Darkmachines (www.darkmachines.org) anomaly score challenge:
Objective = compare different approaches to define an “event- by-event” anomaly score

Dark Machines About  News Events Projects  Researc hers ~ White paper ~ Mailinglist ~ Contribute W

: The rkacines Anoay Score Challene:

& Benchmark Data and Model Independent Event
Classification for the Large Hadron Collider
Event data:
4-vectors, jets, leptons, charge, photons

T. Aarrestad® M. van Beekveld® M. Bona® A. Boveia® S. Caron¢ J. Davies®

A. De Simone’¢ C. Doglioni” J. M. Duarte’ A. Farbin’ H. Gupta® L. Hendriks?
L. Heinrich® J. Howarth! P. Jawahar™¢ A. Jueid” J. Lastow” A. Leinweber®

J. Mamuzic? E. Merényi? A. Morandini” P. Moskvitina? C. Nellist¢ J. Ngadiuba®®
B. Ostdiek“’ M. Pierini® B. Ravina' R. Ruiz de Austri? S. Sekmen®

M. Touranakou®® M. Vaskeviciute! R. Vilalta? J.-R. Vlimant’! R. Verheyen®

M. White® E. Wulff* E. Wallin® K.A. Wozniak®® Z. Zhang?

Different to
LHC Olympics (full signal and bump hunting / density comparisons with a few signals + background expectation)


http://www.darkmachines.org/

Contact persons: Comparisons: B. Ostdiek
(bostdiek@g.harvard.edu)

%es u |tS (O n a rX|V Datasets: M. van Beekveld

(melissa.vanbeekveld@physics.ox.ac.uk)

nttps://arxiv.org/abs/2105.14027)

Compared performance of >20 methods to define anomalies

With > 1000 hyperparameter settings (i.e. algorithms to define anomalies)

Using

>20 signals

Using

> 1 Billion LHC events

Using

A secret dataset (labels are still blind, only Melissa van Beekveld (Oxford) knows)

Task: Classify 100000s of events as SM or not by assigning a score between 0 and 1...

Figure of merit: By how much can we improve the significance for that signal

i.e. Significance Improvement Sl per signal

!
S
Organizers: o5 = 5 = 52 _ 5 os = SIE—ES,
VvB' \egB . /€B \V€B

C. Doglioni, M. Pierini, S.C 71


https://arxiv.org/abs/2105.14027
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Analysis of all models on all signals in the
Dark Machines Unsupervised Challenge Hackathon Data
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Summary plot

Tl =
Total Improvement. (over many signals)

(median, max and min
Improvement of many
toy signals)

- Good algorithms have
large max, min and mean TI

Dark Machines Unsupervised Challenge Hackathon Data

4 8 ¢+ O

Latent Space
ALAD
DAGMM
ConvVAE

Planar A
SNF <
IAF ®
ConvF ®

KDE
VAE
Flow
Combined

o & Vo

Deep SVDD
Deep Set
CNN(B)VAE
SimpleAE

https://arxiv.org/abs/2105.14027
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Summary plot

Tl =
Total Improvement. (over many signals)

(median, max and min
Improvement of many
toy signals)

- Good algorithms have
large max, min and mean TI

- DeepSVDD, Flow,, Combined, DeepSets
largely outperform

traditional approaches (e.g. KDE),

but also all autoencoder and VAEs !!

Why ? --> decoder seems not to be needed!

Dark Machines Unsupervised Challenge Hackathon Data

4 8 ¢+ O

Latent Space
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ConvVAE

Planar A
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ConvF H
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Flow
Combined
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>
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e

Deep SVDD
Deep Set
CNN(B)VAE

SimpleAE

https://arxiv.org/abs/2105.14027
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Rare and Different

Idea:

Anomalies can be either rare, meaning that
these events are a minority in the normal
dataset, or different, meaning they have values
that are not inside the dataset.

We quantify and combine these two
properties/objectives

https://arxiv.org/abs/2106.10164



Rare = Density estimation

Idea:

Normal

Aiicesinly Signal region is region outside the SM

W /simulation

T

Series of paper on flow models from RU :

- Bob and Rob Verheyen 2021

- Luc Hendris, SC, Rob Verheyen, 2021

- Rob Verheyen : Surjective normalizing flows work

even, -7 0 2

better as anomaly detectors...
- https://inspirehep.net/literature/2077178




Different ? One class classification

Feature 1
L —
x x ;
x|
o” ‘;_‘ §
|
o §

Normal class 2

- -
- ..

Feature 2

Feature 1

Idea:

Signal region is region outside the SM

One-class classifier

_ Normal instances
R et T P
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o v » N » »” \
o' R x X = S - .'
’ X X x ¥y
R R SO x 14 >
| SN e ] Anomalies
:! x x L x . - x : /
x ‘
' x X X x. L : x X
\' x - x x = n‘
\‘ x x » 'l
- - ‘. " x " -
‘. ' >

-~ -
- -
.........

Feature 2



Different? Deep SVDD

Alternatively one could try to pass the events through a
trained “filter” that only allows events to pass if they

belong to the training data
Here: Deep SVDD

X =2 Network = 42

Anomaly score:
Difference from 42 |

The Deep SVDD network is similar to the encoder
component of an autoencoder. The loss is defined as

s(x) = 0% — Model(x), (3)

where the model maps the input = to the same tensor
shape as the manifold O. In our case, O is a vector
of identical scalar values, with the subscript n defining
the scalar value and superscript d the number of ele-
ments in the vector. For example, O3 identifies the vector
(3,3,3,3). The optimisation of the Deep SVDD model is
fundamentally very simple: it is a NN that receives some
input x and transforms it to some output O¢.

28



Rare and Different

Preprocessed <
input event

.

Flow model

\

Likelihood

-- Sample event

- Deep SVDD models
O—

O=

O

O=

e

O,

O .

O= ———>0

O - d=13,n=5

For every (d, n)...

> Score = 0.8

Combine
into one
anomaly
score
(eg AND)

: Combine

gto org\/DD =» Need an ensemble of
a:gria/y Deep SVDDs to make it

sScore
(eg AND) work

_/

Luc Hendriks, Rob Verheyen, SC:

https://arxiv.org/abs/2106.10164

29
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Compare them all

Compared:

 Supervise approaches (100s trained on different “single” signals)
* Mixture of Theory approach

* Unsupervised approaches

Who wins?
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Modern DL outperforms traditional
techniques

AE not the optimal tools (no decoder needed)
Flow models work very good

Combined (rare+different) works good
Supervised approaches outperform
many AE’s etc.

Mixed signal approach outperform
all supervised approaches




Secret dataset!!

5 Dark Machines Unsupervised Challenge Secret Data Best:
wk 100 ' 1 100f ' N

- ;; ; i ; : : go Best supervised

: THEEER= Mg M = 7 Mixed-model

2 10 : ’éii’ 1 & 50 { ¥ sof :
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i . I (1NN L - supervised and
0 5 10 0 5 10 0 10 20 simple unsupervised
Min TI Min TI Median T1

v¢  Flow-Efficient_Likelihood @ DeepSetVAE_weight_10.0 % KDE
e Combined-AND-DeepSVDD-Flow ® DeepSetVAE_weight_1.0 e ALAD_bs5000_L1
V¥ Combined-AVG-DeepSVDD-Flow 8 ALAD_bs500_F V¥V ALAD_bs5000_L2
A Flow-Efficient-No-E_Likelihood ‘ DAGMM_0.01 A ALAD_bs5000_CH
<« Combined-PROD-DeepSVDD-Flow DAGMM_0.001 <« ALAD_bs500_L1
P> Combined-AND-VAE_betal _z21-Flow .~ Planar P> ALAD_bs500_CH
® Combined-OR-DeepSVDD-Flow VAE-dynamic-betal-z13_Radius @® SimpleAE
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ATLAS physics: Classification

Preliminary numbers

Classifier AUC | Accuracy

Comparison of different NN structures ParT (pair int.) 0870 | 0.786

. LightGBM (pair int.) 0.840 0.760

To classify events as 4top or background ParT (no pair int.) il e

eQuite Significant improvement LightGBM (no pair int.) || 0.831 0.750

_ 1D CNN 0.831 | 0.750

expected to current baseline FCN 0829 | 0744

: : PN 0.825 | 0.747

with dedicated Unoptimised FCN 0.822 0.746

"multi-head self-attention”+physics

based NNs Figure: AUC and accuracy of all

tested classifiers
(guess that 4 sigma can become 6 sigma expected
significance, just by better NN...)
Next steps: finish paper, implement in ATLAS, switch loss function to anomaly detection

Working here with
Luc Bultjes, Polina, Clara, Rob, Roberto, Zhonghy
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Transformers is all you need

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* L ukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

XWy; (K

Attention(Q, K, V) = softmax(

QKT

V.

)

v







Gamma rays & the Galactic Center
excess

NASA press release 2014 (excess known since 2009)
The inset is a map of the galactic center with known
sources removed, which reveals the gamma-ray
excess (red, green and blue) found there. This excess
emission is consistent with annihilations from some
hypothesized forms of dark matter. Credit:
NASA/DOE/Fermi LAT Collaboration and T. Linden
(Univ. of Chicago)

Fermi-LAT Observations of High-Energy Gamma-Ray Emission Toward the Galactic Center

Fermi-LAT Collaboration (M. Ajello (Clemson U.) et al.). Nov 9, 2015. 29 pp.
e-Print: arXiv:1511.02938 [astro-ph.HE] |




Guess the fraction of point sources www.mydarkmachine.org

What is this fraction? This is 0.5

Your prediction: s m—

Invert image: @




Simulation with Parameters = Pictures
First idea: Train Conv Network for

Pictures = Parameters

Does this work ? Does it work better than conventional methods ? Why
?

41



Our 2017 convolutional network

Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps maps units units Outputs
1@120x120 64@60x60 128@30x30 128@16x16 256@8x8 256@4x4 256 512 1

Flatten Fully Fully
connected connected

Max-pooling after every convolution
Local response normalization after every other convolution

Figure 6: Visualization of the convolutional neural network. The network consists of an
input layer, 5 convolutional + pooling layers, 2 fully connected layers and finally an output
layer.

Can a NN determine the number of unresolved point sources relative to isotropic radiation ?

*Published in: JCAP 05 (2018) 058, e-Print: 1708.06706 [astro-
ph.HE] 42



https://arxiv.org/abs/1708.06706

What is this fraction?

This is 0.5

fsre true value

1

Rest
3o-error
20-error
1o-error

Pelrfect predictilon

1 1 ! l
02 03 04 05 06 07 08 09
fsre prediction of full network

(b) Prediction of the full network

versus true values.

Your prediction; s s—
Invert image: @

Truth: 0.052
Network: 0.1230

Your guess: 0.5

Who is better? The network

Interpretation here is

frequentists and relies on the model
to be correct (uncertainties

from toy experiments, no p-value yet)




Input real

Today: More wavelenghts—>
Bayesian determination of 25
parameters

LET NETWORK OUTPUT all parameters AND all
uncertainties

44



New paper after 5 years |

RU Internal / in Fermi-LAT
review:

ldea: Test more complex
simulations, learn the best
simulations from data, for
the first time include all
uncertainties (also “out of
simulation”)

Simulator input
parameter space

Simulator output

parameter space
(Neural network input space)

Neural networks
output space

Scenario B

Galactic Center in 5 energy bins

[~

Scenario A

Model 1
parameters

Scenario B

Scenario A

Model 2

parameters

nario B

Model 3

Model 3

parameters




Gamma rays: Galacitic Center and the reality
gap

Our new 2022 NN can regress

s i A — “2-  here 25 parameters at once
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Figure 8: The same as Fig. 4, but in the context of Model 3 (Scenario A).



The finding

Is the data in the simulation ?
What is the fraction of point sources

for this simulation? ,
Model 3, scenario A

]“0 108 ; — real data
— noise
an test data
0 8.. - Fermi model data
g 10
% 102 -
o
<]
(0.6~ - ; .
g 5
" ) g
» E
3
(0.4 " 2 10" 4 -
|
(0.2- ‘ —F )
. v ® scenario A 10° 4 080 D5 0T 075 D030 0BS5S 090 035 1m0
% v scenario B 02 03 04 05 06 07 08 03 10
Normalized distance

00733 3b

model



Can we also determine the point sources
directly?

Yes, other project (shown already some time ago)... show you next
astrosourceid applied to astronomy data






Automatic ID of astrophysical objects:
AutosourcelD, slides by Fiorenzo Stoppa

IDEA: FASTER / REALTIME ID OF ASTRONOMIC SOURCES

Full field (10.5k x 10.5k pixels) is 3.7 seconds for AutosourcelD and 120 for SExtractor.

Train the ML on the simulation and/or the astronomer. i-

Machine Learning is not necessarily the problem here, =
Machine learning can be the solution | = Less Energy
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Hubble HD
Images

100

Most of the visible
sources correctly
localized.

150

Small problems with
a diffraction spike 200

*Astron.Astrophys. 662 (2022) A109,
With Astro department S 3
(mainly Fiorenzo Stoppa) ’ . e . . ey




ATLAS: tracking =2 inference at 40 MHz ?

|dea : Train u-nets to go from (almost) ALL pixels = (almost) ALL tracks (including ALL uncertainties) in one step
Do this on dedicated hardware accelerators (GPUs, FPGAs, neuromorphic, future quantum ?) - CODE?
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LHC etc. : Neuromorphic Computing on AIMC
architecture with IBM and IMM
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How fast can neuromorphic chips process scientific data?
- ATLAS trigger

How much energy do they consume ?

(also compare to quantum hardware, maybe enourmous
gain!)

Benchmarking energy consumption and latency for neuromorphic
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Neuromorphic computing

(source IBM video)

| = current
V=voltage
G= resistances

Various approaches raning from classifical FPGA, ASICs to
In memory computing (previous slide), spiking NN on
chips (Inter Loihi) or even photonic !

Etc.

- Need dedicated study, will likely become highly
important for compuational science

- Main topic of our NWA proposal “datascope” (was
nextgraspp before)

- RU could become a leader here ?






Next steps: philosophy and chatbots

With Henk de Regt (philosophy of science), Kristian Gonzalez and Tom
Claasen (causal discovery, ICIS)

Questions:

- Science Bot = Assume (build?) SIRI/ALEXA (Bert/GPT3 etc) that can
ask scientific questions:

How to make causal relations, how to trust this machine, what do
scientist want, do we like that this is a “Googlebot (made by google) or
HEPbot (made by HEP community)”

- Sustainability of computational science



Summary

* Actually these are not all projects (really a lot of interesing things to
work on)

* Hope to convince you (a bit) that ML is interesting for HEP, astronomy,
sustainability , FNWI and Nikhef....



